Journal of Insect Conservation

, Volume 15, Issue 3, pp 379–388 | Cite as

Phenotypic evidence for hidden biodiversity in the Merodon aureus group (Diptera, Syrphidae) on the Balkan Peninsula: conservation implication

  • Ljubinka Francuski
  • Jasmina Ludoški
  • Ante Vujić
  • Vesna Milankov
Original Paper


Cryptic species and phenotypic divergent units provided useful information about hidden biodiversity in the Merodon genus (Diptera, Syrphidae) on the Balkan Peninsula. Discrimination three cryptic species within both the M. aureus (M. aureus A, M. aureus B and M. aureus C) and M. cinereus (M. cinereus A, M. cinereus B and M. cinereus C) complexes was done by study of subtle wing variation (wing size and shape) using a geometric morphometric approach. Observed interspecific differentiation is generally in agreement with a previous study using molecular markers (allozyme loci, COI mtDNA). A considerable evolutionary and phenotypic intraspecies diversity of the M. aureus A, M. aureus B, M. aureus C, M. cinereus A, M. cinereus B, M. cinereus C and M. funestus species from the Balkan Peninsula has important implications for diagnosing biodiversity, including endemic and cryptic species. Observed phenotypic divergent units within the species might be considered as an evolutionary potential of the M. aureus group and used for defining conservation priorities. This study has contributed to the recognition of the value of wing traits in order to decipher the hidden diversity and evolutionary diversification.


Syrphidae Merodon aureus group Cryptic species Geometric morphometrics Hidden phenotypic diversity Intraspecific divergent units Wing size Wing shape 



We thank to anonymous reviewers for useful comments on the manuscript. The authors wish to thank Mike Taylor for correcting and improving the language. This work was supported in part by the Ministry of Science of Serbia No. 143006B, and the Provincial Secretariat for Science and Technological Development (Maintenance of biodiversity—“Hot spots” on the Balkan and Iberian Peninsula). Lj. Francuski is supported by a Ph.D. fellowship from Ministry of Science of Serbia.


  1. Agapow PM, Bininda-Emonds ORP, Crandall KA, Gittleman JL, Mace GM, Marshall JC, Purvis A (2004) The impact of species concept on biodiversity studies. Q Rev Biol 79(2):162–354CrossRefGoogle Scholar
  2. Agnarsson I, Kuntner M (2007) Taxonomy in a changing world: seeking solutions for a science in crisis. Syst Biol 56:531–539PubMedCrossRefGoogle Scholar
  3. Bernatchez L, Wilson C (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–452CrossRefGoogle Scholar
  4. Birdsall K, Zimmerman E, Teeter K, Gibson G (2000) Genetic variation for the positioning of wing veins in Drosophila melanogaster. Evol Dev 2(1):16–24PubMedCrossRefGoogle Scholar
  5. Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, CambridgeGoogle Scholar
  6. Dapporto L (2010a) Satyrinae butterflies from Sardinia and Corsica show a kaleidoscopic intraspecific biogeography (Lepidoptera, Nymphlidae). Bio J Linn Soc 100:195–212CrossRefGoogle Scholar
  7. Dapporto L (2010b) Speciation in Mediterranean refugia and post-glacial expansion of Zerynthia polyxena (Lepidoptera, Papilionidae). J Zool Syst Evol Res. doi:  10.1111/j.1439-0469.2009.00550.x
  8. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415CrossRefGoogle Scholar
  9. Debat V, Bégin M, Legout H, David JR (2003) Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evolution 57(12):2773–2784PubMedGoogle Scholar
  10. Francuski Lj, Ludoški J, Vujić A, Milankov V (2009a) Wing geometric morphometric inferences on species delimitation and intraspecific divergent units in the Merodon ruficornis group (Diptera, Syrphidae) from the Balkan Peninsula. Zool Sci 26:301–308PubMedCrossRefGoogle Scholar
  11. Francuski Lj, Vujić A, Kovačević A, Ludoški J, Milankov V (2009b) Identification of the species of the Cheilosia variabilis group (Diptera, Syrphidae) from the Balkan Peninsula using wing geometric morphometrics, with the revision of status of C. melanopa redi Vujić, 1996. Contrib Zool 78(3):129–140Google Scholar
  12. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  13. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos T Roy Soc B 359:183–195CrossRefGoogle Scholar
  14. Marcos-García MA, Vujić A, Mengual X (2007) Revision of Iberian species of the genus Merodon Meigen, 1803 (Diptera: Syrphidae). Eur J Entomol 104:531–572Google Scholar
  15. Mengual X, Ståhls G, Vujić A, Marcos-García M (2006) Integrative taxonomy of Iberian Merodon species (Diptera: Syrphidae). Zootaxa 1377:1–26Google Scholar
  16. Milankov V, Ståhls G, Stamenković J, Vujić A (2008a) Genetic diversity of populations of Merodon aureus and M. cinereus species complexes (Diptera, Syrphidae): integrative taxonomy and implications for conservation priorities on the Balkan Peninsula. Conserv Genet 9(5):1125–1137CrossRefGoogle Scholar
  17. Milankov V, Ståhls G, Vujić A (2008b) Molecular diversity of populations of the Merodon ruficornis group (Diptera, Syrphidae) on the Balkan Peninsula. J Zool Syst Evol Res 46(2):143–152CrossRefGoogle Scholar
  18. Milankov V, Ludoški J, Ståhls G, Stamenković J, Vujić A (2009) High molecular and phenotypic diversity in the Merodon avidus complex (Diptera, Syrphidae): cryptic speciation in a diverse insect taxon. Zool J Linn Soc 155(4):819–833CrossRefGoogle Scholar
  19. Moritz C (1994) Defining “evolutionary significant units” for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefGoogle Scholar
  20. Moritz C (2002) Strategies to protect biological diversity and evolutionary processes that sustain it. Syst Biol 51(2):238–254PubMedCrossRefGoogle Scholar
  21. Padial JM, Castroviejo-Fisher S, Köhler J, Vilá C, Chaparro JC, De la Riva I (2009) Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zool Scr 38(4):431–447CrossRefGoogle Scholar
  22. Rayder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10CrossRefGoogle Scholar
  23. Roe AD, Sperling AH (2007) Population structure and species boundary delimitation of cryptic Dioryctria moths: an integrative approach. Mol Ecol 16:3617–3633PubMedCrossRefGoogle Scholar
  24. Rohlf FJ (2004) TpsDig–thin plate spline digitizer, version 1.40. Department of Ecology and Evolution, State university of New York at Stony Brook, New YorkGoogle Scholar
  25. Rohlf FJ (2005) TpsRegr, version 1.31. Department of Ecology and Evolution, State university of New York at Stony Brook, New YorkGoogle Scholar
  26. Rohlf FJ (2006) TpsRelw–thin plate spline relative warp, version 1.44. Department of Ecology and Evolution, State university of New York at Stony Brook, New YorkGoogle Scholar
  27. Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132CrossRefGoogle Scholar
  28. Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39(1):40–59CrossRefGoogle Scholar
  29. Rohlf FJ, Loy A, Corti M (1996) Morphometric analysis of old world talpidae (Mammalia, Insectivora) using partial-warp scores. Syst Biol 45(3):344–362CrossRefGoogle Scholar
  30. Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20:1026–1033PubMedCrossRefGoogle Scholar
  31. Schlick-Steiner BC, Steiner FM, Seiert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource biodiversity. Ann Rev Entomol 55:421–438CrossRefGoogle Scholar
  32. Speight MCD (2008) Species accounts of European Syrphidae (Diptera) 2008. In: Speight MCD, Castella E, Sarthou J-P, Monteil C (eds) Syrph the Net, the database of European Syrphidae. Syrph the Net publications, DublinGoogle Scholar
  33. Ståhls G, Vujić A, Milankov V (2008) Cheilosia vernalis-complex: molecular and morphological variability (Diptera, Syrphidae). Ann Zool Fenn 45:149–159Google Scholar
  34. Ståhls G, Vujić A, Pérez-Baňon C, Radenković S, Rojo S, Petanidou T (2009) COI barcodes for identification of Merodon hoverflies (Diptera, Syrphidae) of Lesvos Island, Greece. Mol Ecol Resour 9(6):1431–1438CrossRefGoogle Scholar
  35. Villemant C, Simbolotti G, Kenis M (2007) Discrimination of Eubazus (Hymenoptera, Braconidae) sibling species using geometric morphometrics analysis of wing venation. Syst Entomol 32(4):625–634CrossRefGoogle Scholar
  36. Wheeler Q (2005) Losing the plots: “barcodes” and taxonomy. Cladistics 21:405–407CrossRefGoogle Scholar
  37. Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20(1):47–55CrossRefGoogle Scholar
  38. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54(5):844–851PubMedCrossRefGoogle Scholar
  39. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologist a primer. Elsevier Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ljubinka Francuski
    • 1
  • Jasmina Ludoški
    • 1
  • Ante Vujić
    • 1
  • Vesna Milankov
    • 1
  1. 1.Faculty of Sciences, Department of Biology and EcologyUniversity of Novi SadNovi SadSerbia

Personalised recommendations