Journal of Insect Conservation

, Volume 14, Issue 1, pp 11–18 | Cite as

Evaluating the impact of non-lethal DNA sampling on two butterflies, Vanessa cardui and Satyrodes eurydice

  • Christopher A. Hamm
  • Deepa Aggarwal
  • Douglas A. Landis
Original Paper

Abstract

Genetic sampling of endangered species can inform conservation management and potentially aid the long-term survival of a species. However, when dealing with very small populations of rare species, the sacrifice of whole animals may not be desirable or permitted. We set out to develop a demonstrably non-lethal method of obtaining DNA from the federally-endangered Mitchell’s satyr butterfly, Neonympha mitchellii mitchellii. Because of its endangered status we developed our methods on related species. In greenhouse and fields trials, we demonstrate that removal of small amounts of hind wing (2–3 mm2) has no significant impact on the behavior or survival of Vanessa cardui and Satyrodes eurydice. Based on these studies we were successful in obtaining a permit from the US Fish and Wildlife Service to sample DNA from N. m. mitchellii populations. We suggest that our results can be extended to the sampling of other rare butterfly species.

Keywords

Non-lethal sampling Survivability Mark-recapture Lepidoptera Conservation 

Notes

Acknowledgments

The authors wish to thank members of the Mitchell’s Satyr Recovery Working Group and Carrie Tansey of the USFWS for early discussions that shaped this research. We also thank Jessica Albright, Douglas Badgero, Alissa Berro, Jordan Shelley and Grace O’Connor of Michigan State University, and two anonymous reviewers. Many of the techniques and analyses in this paper were developed using tools learned in the ELME (Enhancing Linkages between Math and Ecology) course at the WK Kellogg Biological Station. This research was partially funded by a Plant Sciences Fellowship to CAH.

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. doi:10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Allendorf F, Luikart G (2007) Conservation and the genetics of populations. Blackwell, MaldenGoogle Scholar
  3. Barton B, Bach C (2005) Habitat use by the federally endangered mitchell’s satyr butterfly (Neonympha mitchellii mitchellii) in a Michigan Prairie Fen. Am Midl Nat 153:41–51. doi:10.1674/0003-0031(2005)153[0041:HUBTFE]2.0.CO;2 CrossRefGoogle Scholar
  4. Bolker B (2008) Ecological models and data in R. Princeton University Press, PrincetonGoogle Scholar
  5. Breslow N, Clayton D (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25. doi:10.2307/2290687 CrossRefGoogle Scholar
  6. Carter C (1992) Morphological senescence and longevity: an experiment relating wing wear and life span in foraging wild bumble bees. J Anim Ecol 61:225–231. doi:10.2307/5525 CrossRefGoogle Scholar
  7. Châline N, Ratnieks F, Raine N (2004) Non-lethal sampling of honey bee, Apis mellifera, DNA using wing tips. Apidologie (Celle) 35:311–318. doi:10.1051/apido:2004015 CrossRefGoogle Scholar
  8. Dudley R (2000) The biomechanics of insect flight: form, function, evolution. Princeton University Press, PrincetonGoogle Scholar
  9. Edmunds M (1974) Significance of beak marks on butterfly wings. Oikos 25:117–118. doi:10.2307/3543555 CrossRefGoogle Scholar
  10. Ellington C (1984) The aerodynamics of flapping animal flight. Am Zool 24:95–105Google Scholar
  11. Fincke O, Hadrys H (2001) Unpredictable offspring survivorship in the damselfly. Megaloprepus coerulatus, shapes parental behavior, constrains sexual selection, and challenges traditional fitness estimates. Evol Int J Org Evol 55:762–772. doi:10.1554/0014-3820(2001)055[0762:UOSITD]2.0.CO;2 Google Scholar
  12. Gerken T, Kurtz J, Sauer KP et al (1998) DNA preparation and efficient microsatellite analysis from insect hemolymph. Electrophoresis 19:3069–3070. doi:10.1002/elps.1150191804 CrossRefPubMedGoogle Scholar
  13. Goldstein P, Hall S, Hart B, et al (2004) Evaluation of relationships and conservation status within the Neonympha mitchellii complex (Lepidoptera: Nymphalidae). Report for the US Fish and Wildlife ServiceGoogle Scholar
  14. Gompert Z, Nice C, Fordyce J et al (2006) Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly. Mol Ecol 15:1759–1768. doi:10.1111/j.1365-294X.2006.02905.x CrossRefPubMedGoogle Scholar
  15. Hanski I, Pakkala I, Kuussaari M et al (1995) Metapopulation persistence of an endangered butterfly in a fragmentation landscape. Oikos 72:21–28. doi:10.2307/3546033 CrossRefGoogle Scholar
  16. Hart B (2004) A survey for the Mitchell’s satyr (Neonympha mitchellii French) in the national forests in Alabama (Final Report). Report for the US Fish and Wildlife ServiceGoogle Scholar
  17. Hebert P, Penton E, Burns J et al (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817. doi:10.1073/pnas.0406166101 CrossRefPubMedGoogle Scholar
  18. Hedenström A, Ellington C, Wolf T (2001) Wing wear, aerodynamics and flight energetics in bumblebees (Bombus terrestris): an experimental study. Funct Ecol 15:417–422. doi:10.1046/j.0269-8463.2001.00531.x CrossRefGoogle Scholar
  19. Hein E, Myers O (2000) The effect of surveyor experience on frequency of recapture in pierid butterflies. Southwest Nat 45:67–69. doi:10.2307/3672553 CrossRefGoogle Scholar
  20. Heinrich B (1993) The hot-blooded insects: mechanisms and evolution of thermoregulation. Harvard University Press, CambridgeGoogle Scholar
  21. Holehouse K, Hammond R, Bourke A (2003) Non-lethal sampling of DNA from bumble bees for conservation genetics. Insectes Soc 50:277–285. doi:10.1007/s00040-003-0672-6 CrossRefGoogle Scholar
  22. Kingsolver J (1999) Experimental analyses of wing size, flight, and survival in the western white butterfly. Evol Int J Org Evol 53:1479–1490. doi:10.2307/2640894 Google Scholar
  23. Lebreton J, Burnham K, Clobert J et al (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118. doi:10.2307/2937171 CrossRefGoogle Scholar
  24. Lederhouse R (1982) Factors affecting equal catchability in two swallowtail butterflies, Papilio polyxenes and P. glaucus. Ecol Entomol 7:379–383CrossRefGoogle Scholar
  25. Longhorn S, Nicholas M, Chuter J et al (2007) The utility of molecular markers from non-lethal DNA samples of the CITES II protected “tatantula” Brachypelma vagans (Araneae, Theraphosidae). J Acarol 35:278–292Google Scholar
  26. Lushai G, Fjellsted W, Marcovitch O (2000) Application of molecular techniques to non-lethal tissue samples of endangered butterfly populations (Parnassius apollo L.) in Norway for conservation management. Biol Conserv 94:43–50. doi:10.1016/S0006-3207(99)00165-2 CrossRefGoogle Scholar
  27. Morton A (1982) The effects of marking and capture on recapture frequencies of butterflies. Oecologia 52:105–110. doi:10.1007/BF00377143 CrossRefGoogle Scholar
  28. Petersen S, Mason T, Akber S et al (2007) Species Identification of tarantulas using exuviae for international wildlife law enforcement. Conserv Genet 8:497–502CrossRefGoogle Scholar
  29. Roble S, Kessler C, Grimes B et al (2001) Biology and conservation status of Neonympha mitchellii, a globally rare butterfly new to the Virginia fauna. Banisteria 18:3–23Google Scholar
  30. Rodd F, Plowright R, Owen R (1980) Mortality rates of adult bumble bee workers (Hymenoptera: Apidae). Can J Zool 58:1718–1721CrossRefGoogle Scholar
  31. Rose O, Brookes M, Mallet J (1994) A quick and simple nonlethal method for extracting DNA from butterfly wings. Mol Ecol 3:275. doi:10.1111/j.1365-294X.1994.tb00064.x CrossRefGoogle Scholar
  32. Saccheri I, Kuussaari M, Kankare M et al (1998) Inbreeding and extinction in a butterfly metapopulations. Nature 392:491–494. doi:10.1038/33136 CrossRefGoogle Scholar
  33. Starks P, Peters J (2002) Semi-nondestructive genetic sampling from live eusocial wasps, Polistes dominulus and Polistes fuscatus. Insectes Soc 49:20–22. doi:10.1007/s00040-002-8272-4 CrossRefGoogle Scholar
  34. Taberlet P, Waits L (1998) Non-invasive genetic sampling. Trends Ecol Evol 13:26–27. doi:10.1016/S0169-5347(97)01276-7 CrossRefGoogle Scholar
  35. Taberlet P, Waits L, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327. doi:10.1016/S0169-5347(99)01637-7 CrossRefPubMedGoogle Scholar
  36. Vogler A, DeSalle R (1994) Diagnosing units of conservation management. Conserv Biol 8:354–363. doi:10.1046/j.1523-1739.1994.08020354.x CrossRefGoogle Scholar
  37. Williams B (2002) Conservation genetics, extinction, and taxonomic status: a case history of the regal fritillary. Conserv Biol 16:148–157. doi:10.1046/j.1523-1739.2002.00147.x CrossRefGoogle Scholar
  38. Wourms M, Wasserman F (1985) Butterfly wing markings are more advantageous during handling than during the initial strike of an avian predator. Evol Int J Org Evol 39:845–851. doi:10.2307/2408684 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christopher A. Hamm
    • 1
  • Deepa Aggarwal
    • 2
  • Douglas A. Landis
    • 1
  1. 1.Department of EntomologyMichigan State UniversityEast LansingUSA
  2. 2.Department of Statistics and ProbabilityMichigan State UniversityEast LansingUSA

Personalised recommendations