Coastal dunes as important strongholds for the survival of the rare Niobe fritillary (Argynnis niobe)

Original Paper

Abstract

We studied the oviposition and larval habitat preferences of the Niobe fritillary (Argynnis niobe) in the dunes of the east Frisian Island Langeoog (German North Sea). By ascertaining habitat quality we are able to assess the minimum habitat size for populations of A. niobe in dune islands. The preferred oviposition and larval habitats were best characterised by a combination of (1) host-plant abundance, (2) host-plant quality and (3) vegetation structure. The oviposition and larval habitats of A. niobe were characterised by low-growing vegetation with bare ground and a warm microclimate. In contrast to the also common V. tricolor ssp. curtisii, the leaves of the host plant V. canina showed a lower C/N ratio, suggesting that differences in plant quality may account for host-plant use. A. niobe seems to depend on very large areas of potential larval habitat, thus explaining its ongoing decline in the increasingly fragmented Central European landscape. Our data indicate that grass encroachment is a major threat for A. niobe in coastal dunes due to its negative impact on microclimate and violet germination. Mosaic top-soil removal and low-intensity grazing should be suitable tools to promote rejuvenation of V. canina.

Keywords

Butterflies Conservation Habitat quality Host plants Minimum habitat size Vegetation structure 

Notes

Acknowledgments

We would like to thank N. Anthes, G. Hermann, M. WallisDeVries and an anonymous reviewer for valuable comments on the manuscript. We are grateful to the administration of the Wadden Sea National Park of Lower Saxony for providing permission of access and vegetation maps. Thanks for providing distribution data of Argynnis niobe and helpful information to R. Altmüller, H. Andretzke, R. Bolz, M. Bräu, S. Buchholz, S. Caspari, J. Gelbrecht, F. Goosmann, S. Hafner, H. G. Joger, J. Kleinekuhle, D. Koelman, D. Kolligs, A. C. Lange, D. Lück, P. Mansfeld, B. Nannen, R. Ohle, R. Reinhardt, F. Röbbelen, A. Schmidt, P. Schmidt, M. Sommerfeld, M. Stoltze, R. Trusch, J. Voith, H. Wegner.

References

  1. Anthes N, Fartmann T, Hermann G (2003a) Wie lässt sich der Rückgang des Goldenen Scheckenfalters (Euphydryas aurinia) in Mitteleuropa stoppen? Erkenntnisse aus populationsökologischen Studien in voralpinen Niedermoorgebieten und der Arealentwicklung in Deutschland. Naturschutz Landschaftspl 35:279–287Google Scholar
  2. Anthes N, Fartmann T, Hermann G, Kaule G (2003b) Combining larval habitat quality and metapopulation structure—the key for successful management of prealpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185. doi: 10.1023/A:1027330422958 CrossRefGoogle Scholar
  3. Anthes N, Fartmann T, Hermann G (2008) The Duke of Burgundy butterfly and its dukedom: larval niche variation in Hamearis lucina across Central Europe. J Insect Conserv 12:3–14. doi: 10.1007/s10841-007-9084-7 CrossRefGoogle Scholar
  4. Aquazoo-Löbbecke Museum (2007) Landessammlung Großschmetterlinge. Available via DIALOG. http://www.duesseldorf.de/cgi-bin/aquazoo/insekten.pl?insekt_typ=1. Accessed 26 Oct 2008
  5. Bayerisches Landesamt für Umwelt (ed) (2007) Artenschutzkartierung Bayern. Argynnis niobe (Linnaeus, 1758). Datenbankauszug. Received 03 April 2007Google Scholar
  6. Beattie AJ, Lyons N (1975) Seed dispersal in Viola (Violaceae): adaptations and strategies. Am J Bot 62:714–722. doi: 10.2307/2442060 CrossRefGoogle Scholar
  7. Beneš J, Kepka P, Konvička M (2002) Limestone quarries as refuges for European xerophilous butterflies. Conserv Biol 17:1058–1069. doi: 10.1046/j.1523-1739.2003.02092.x Google Scholar
  8. Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman & Hall, New YorkGoogle Scholar
  9. Bink FA (1986) Acid stress in Rumex hydrolapathum (Polygonaceae) and its influence on the phytophage Lycaena dispar (Lepidoptera, Lycaenidae). Oecologia 70:447–451. doi: 10.1007/BF00379510 CrossRefGoogle Scholar
  10. Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schyt, HaarlemGoogle Scholar
  11. Bos FG, Bosveld MA, Groenendijk DG, van Swaay CAM, Wynhoff I (2006) De dagvlinders van Nederland. Verspreiding en bescherming. Nederlandse Fauna 7. KNNV Uitgeverij, LeidenGoogle Scholar
  12. Bourn NAD, Thomas JA (1993) The ecology and conservation of the brown argus butterfly Aricia agestis in Britain. Biol Conserv 63:67–74. doi: 10.1016/0006-3207(93)90075-C CrossRefGoogle Scholar
  13. Brockmann E (1989) Schutzprogramm für Tagfalter in Hessen (Papilionoidea und Hesperioidea). Stiftung Hessischer Naturschutz, ReiskirchenGoogle Scholar
  14. Bulman CR, Wilson RJ, Holt AR, Gálvez Bravo L, Early RI, Warren MS, Thomas CD (2007) Minimum viable metapopulation size, extinction debt, and the conservation of a declining species. Ecol Appl 17:1460–1473. doi: 10.1890/06-1032.1 CrossRefPubMedGoogle Scholar
  15. Cain ML, Eccleston J, Kareiva PM (1985) The influence of food plant dispersion on caterpillar searching success. Ecol Entomol 10:1–7. doi: 10.1111/j.1365-2311.1985.tb00529.x CrossRefGoogle Scholar
  16. Dennis RLH, Shreeve TG, van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966. doi: 10.1007/s10531-005-4314-3 CrossRefGoogle Scholar
  17. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 1, Tagfalter I. Eugen Ulmer, StuttgartGoogle Scholar
  18. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation and patch area. J Insect Conserv 12:677–688. doi: 10.1007/s10841-007-9110-9 CrossRefGoogle Scholar
  19. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. 3. Aufl. Scr Geobot 18:1–258Google Scholar
  20. Fartmann T (2004) Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales. Abh Westf Mus Naturkde 66:1–256Google Scholar
  21. Fartmann T (2006a) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fenn 43:335–347Google Scholar
  22. Fartmann T (2006b) Welche Rolle spielen Störungen für Tagfalter und Widderchen? In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abh Westf Mus Naturkde 68 (3/4):259–270Google Scholar
  23. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa, vol 68 (3/4). Abh Westf Mus Naturkde, Münster, pp 11–57Google Scholar
  24. Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124:235–241. doi: 10.1007/s004420000365 CrossRefGoogle Scholar
  25. Föhst P, Broszkus W (1992) Beiträge zur Kenntnis der Schmetterlingsfauna (Insecta: Lepidoptera) des Hunsrück-Nahe-Gebiets (BRD, Rheinland-Pfalz. Fauna Flora Rheinland-Pfalz Beiheft 3:5–334Google Scholar
  26. Fric Z, Konvička M (2002) Perleťovec maceškový. Argynnis niobe (Linnaeus, 1758). In: Beneš J, Konvička M, Dvořak J, Fric Z, Havelda Z, Pavlíčko A, Vrabec V, Weidenhoffer Z (eds) Motýli České republiky: Rozšiření a ochrana I. Butterflies of the Czech Republic: Distribution and conservation I. SOM, Prag, pp 409–411Google Scholar
  27. García-Barros E, Fartmann T (2009) Oviposition sites. In: Settele J, Shreeve TG, M. Konvička, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 105–118 (in press)Google Scholar
  28. Haeupler H, Schönfelder P (1989) Atlas der Farn- und Blütenpflanzen der Bundesrepublik Deutschland. Eugen Ulmer, StuttgartGoogle Scholar
  29. Hafner S (2005) Neue Beobachtungen zum Vorkommen von Fabriciana niobe im Schwarzwald und auf der Schwäbischen Alb. In: Ebert G (ed) Die Schmetterlinge Baden-Württembergs. Band 10. Ergänzungsband. Eugen Ulmer, Stuttgart, pp 46–47Google Scholar
  30. Jordano D, Gomariz G (1994) Variation in phenology and nutritional quality between host plants and its effect on larval performance in a specialist butterfly, Zerynthia rumina. Entomol Exp Appl 71:271–277. doi: 10.1007/BF02426411 CrossRefGoogle Scholar
  31. Konvička M, Hula V, Fric Z (2003) Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae): What can be learned from vegetation composition and architecture? Eur J Entomol 100:313–322Google Scholar
  32. Kooijman AM, Dopheide JCR, Sevink J, Takken I, Verstraten JM (1998) Nutrient limitations and their implications on the effects of atmospheric deposition in coastal dunes; lime-poor and lime-rich sites in the Netherlands. J Ecol 86:511–526. doi: 10.1046/j.1365-2745.1998.00273.x CrossRefGoogle Scholar
  33. Kopper BJ, Charlton RE, Margolies DC (2000) Oviposition site selection by the regal fritillary, Speyeria idalia, as affected by proximity of violet host plants. J Insect Behav 13:651–665. doi: 10.1023/A:1007887809621 CrossRefGoogle Scholar
  34. Kraus W (1993) Verzeichnis der Großschmetterlinge (Insecta: Lepidoptera) der Pfalz. Selbstverlag, Bad DürkheimGoogle Scholar
  35. Lederer G, Künnert R (1963) Beiträge zur Insektenfauna des Mittelrheins und der angrenzenden Gebiete. Entomol Zeitschr 73:237–243Google Scholar
  36. Lobenstein U (2003) Die Schmetterlingsfauna des mittleren Niedersachsens. Bestand, Ökologie und Schutz der Großschmetterlinge in der Region Hannover, der Südheide und im unteren Weser-Leine-Bergland. NABU, HannoverGoogle Scholar
  37. Maes D, Ghesquiere A, Logie M, Bonte D (2006) Habitat use and mobility of two threatened coastal dune insects: implications for conservation. J Ins Cons 10:105–115. doi: 10.1007/s10841-006-6287-2 CrossRefGoogle Scholar
  38. Möllenbeck V, Hermann G, Fartmann T (2008) Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J Insect Conserv 13:77–87. doi: 10.1007/s10841-007-9128-z CrossRefGoogle Scholar
  39. Munguira ML, García-Barros E, Martin J (2009) Herbivory. In: Settele J, Shreeve TG, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge (in press)Google Scholar
  40. Nationalpark Niedersächsisches Wattenmeer (2007) Habitate. Habitate. Available via DIALOG. http://www.nationalpark-wattenmeer.niedersachsen.de/master/C28089931_N28551166_L20_D0_I5912119.html. Accessed 26 Oct 2008
  41. NLWKN (Niedersächsischer Landesbetrieb für Wasserwirtschaft Küsten- und Naturschutz) (ed) (2006) Argynnis niobe. Auszug aus den Funddaten des Tierarten-Erfassungsprogramms der Fachbehörde für Naturschutz. Received 13 Mar 2006Google Scholar
  42. Oberdorfer E (2001) Pflanzensoziologische Exkursionsflora. 8. Aufl. Eugen Ulmer, StuttgartGoogle Scholar
  43. Petersen J, Lammerts EJ (2005) Dunes. In: Essink K, Dettmann C, Farke H, Laursen G, Marencic H, Wiersinga W (eds) Wadden Sea Quality Status Report 2004. Wadden Sea Ecosyst 19:249–266Google Scholar
  44. Petersen J, Pott R (2005) Ostfriesische Inseln. Landschaft und Vegetation im Wandel. Schriften zur Heimatpflege. Veroffentl Niedersachs Heimatbundes 15:1–160Google Scholar
  45. Porter K (1982) Basking behaviour in the larvae of the butterfly Euphydryas aurinia. Oikos 38:308–312. doi: 10.2307/3544670 CrossRefGoogle Scholar
  46. Porter K (1992) Eggs and egg-laying. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 46–72Google Scholar
  47. Pretscher P (1998) Rote Liste der Großschmetterlinge (Macrolepidotera). Schriftenr Landschaftspfl Naturschutz 55:87–111Google Scholar
  48. Pullin AS (1986) Influence of the food plant, Urtica dioica, on larvae development, feeding efficiency, and voltinism of a specialist insect, Inachis io. Holarct Ecol 9:72–78Google Scholar
  49. Randle Z, Simcox DJ, Schönrogge K, Wardlaw JC, Thomas JA (2005) Myrmica ants as keystone species and Maculinea arion as an indicator of rare niches in UK grasslands. In: Settele J, Kühn E, Thomas JA (eds) Studies on the ecology and conservation of butterflies in Europe. Vol 2: species ecology along a European gradient: Maculinea butterflies as a model. Pensoft, Sofia, pp 26–27Google Scholar
  50. Rausher MD (1979) Egg recognition: its advantage to a butterfly. Anim Behav 27:1034–1040. doi: 10.1016/0003-3472(79)90050-2 CrossRefGoogle Scholar
  51. Reinhardt R (1983) Beiträge zur Insektenfauna der DDR. Lepidoptera—Rhopalocera et Hesperiidae. Entomol Nachr Ber 26, Beih Nr. 2:1–79Google Scholar
  52. Reinhardt R (2005) Beiträge zur Tagfalterfauna Sachsens. Teil 2: Familie Nymphalidae (Edelfalter)—Unterfamilien Heliconiinae und Nymphalinae. Mitt Sachsischer Entomol Suppl 3:1–210Google Scholar
  53. Rennwald E (2002) (ed) Verzeichnis und Rote Liste der Pflanzengesellschaften Deutschlands mit Datenservice auf CD-Rom. Schriftenr Vegetationsk 35:1–800Google Scholar
  54. SBN (Schweizerischer Bund für Naturschutz Lepidopteren-Arbeitsgruppe) (ed) (1987) Tagfalter und ihre Lebensräume. Arten, Gefährdung, Schutz. Fotorar AG, Egg/ZHGoogle Scholar
  55. Stamm K (1981) Prodomus der Lepidopteren-Fauna der Rheinlande und Westfalens. Selbstverlag, SolingenGoogle Scholar
  56. Stoutjesdijk P, Barkman JJ (1992) Microclimate vegetation and fauna. Opulus Press, UppsalaGoogle Scholar
  57. Streif H (1990) Das ostfriesische Küstengebiet. 2nd edn. Sammlung geologischer Führer 59:1–376Google Scholar
  58. ten Harkel MJ, van der Meulen F (1995) Impact of grazing and atmospheric nitrogen deposition on the vegetation of dry coastal dune grasslands. J Veg Sci 6:445–452. doi: 10.2307/3236245 CrossRefGoogle Scholar
  59. Thomas JA (1991) Rare species conservation: case studies of European butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell Scientific, Oxford, pp 149–197Google Scholar
  60. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B Biol Sci 268:1791–1796. doi: 10.1098/rspb.2001.1693 CrossRefGoogle Scholar
  61. Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslichtplanung. Hofmann, SchondorfGoogle Scholar
  62. van der Meijden R, Plate CL, Weeda EJ (1989) Atlas van de Nederlandse flora, deel 3: minder zeldzame en algemene soorten. Onderzoeksinstituut Rijksherbarium/Hortus Botanicus, LeidenGoogle Scholar
  63. van Swaay CAM, Warren MS, Lois G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209. doi: 10.1007/s10841-006-6293-4 CrossRefGoogle Scholar
  64. WallisDeVries MF (2004) A quantitative conservation approach for the endangered butterfly Maculinea alcon. Conserv Biol 18:488–499Google Scholar
  65. WallisDeVries MF, Raemakers I (2001) Does extensive grazing benefit butterflies in coastal dunes? Restor Ecol 9:179–188. doi: 10.1046/j.1526-100x.2001.009002179.x CrossRefGoogle Scholar
  66. WallisDeVries MF, van Swaay CAM (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Glob Change Biol 12:1620–1626. doi: 10.1111/j.1365-2486.2006.01202.x CrossRefGoogle Scholar
  67. Warren MS (1992) Butterfly populations. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 73–92Google Scholar
  68. Warren MS (1993) A review of butterfly conservation in central southern Britain: II. Site management and habitat selection of key species. Biol Conserv 64:37–49. doi: 10.1016/0006-3207(93)90381-A CrossRefGoogle Scholar
  69. Warren MS (1995) Managing local microclimates for the high brown fritillary, Argynnis adippe. In: Pullin AS (ed) Ecology and conservation of butterflies. Chapman & Hall, London, pp 198–210Google Scholar
  70. Weidemann HJ (1995) Tagfalter: beobachten, bestimmen, 2nd edn. Naturbuch-Verlag, AugsburgGoogle Scholar
  71. Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 67:23–29. doi: 10.1007/BF00379780 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.MünsterGermany
  2. 2.Department of Community Ecology, Institute of Landscape EcologyUniversity of MünsterMünsterGermany

Personalised recommendations