Journal of Insect Conservation

, Volume 13, Issue 3, pp 329–345 | Cite as

Loss of genetic connectivity and diversity in urban microreserves in a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus n. sp. “santa monica”)

  • Amy G. VandergastEmail author
  • Eric A. Lewallen
  • Joseph Deas
  • Andrew J. Bohonak
  • David B. Weissman
  • Robert N. Fisher
Original Paper


Microreserves may be useful in protecting native arthropod diversity in urbanized landscapes. However, species that do not disperse through the urban matrix may eventually be lost from these fragments. Population extinctions may be precipitated by an increase in genetic differentiation among fragments and loss of genetic diversity within fragments, and these effects should become stronger with time. We analyzed population genetic structure in the dispersal limited Jerusalem cricket Stenopelmatus n. sp. “santa monica” in the Santa Monica Mountains and Simi Hills north of Los Angeles, California (CA), to determine the impacts of fragmentation over the past 70 years. MtDNA divergence was greater among urban fragments than within contiguous habitat and was positively correlated with fragment age. MtDNA genetic diversity within fragments increased with fragment size and decreased with fragment age. Genetic divergence across 38 anonymous nuclear Inter-Simple Sequence Repeat (ISSR) loci was influenced by the presence of major highways and highway age, but there was no effect of additional urban fragmentation. ISSR diversity was not correlated with fragment size or age. Differing results between markers may be due to male-biased dispersal, or different effective population sizes, sorting rates, or mutation rates among sampled genes. Results suggest that genetic connectivity among populations has been disrupted by highways and urban development, prior to declines in local population sizes. We emphasize that genetic connectivity can rapidly erode in fragmented landscapes and that flightless arthropods can serve as sensitive indicators for these effects.


Habitat fragmentation Insects ISSR loci mtDNA sequences Population genetic structure 



We thank Gary Busteed, Seth Riley, Lena Lee, Denise Kamradt and others at the National Park Service for collecting samples, facilitating our field work, and sharing spatial data including road and subdivision ages. We are grateful to Kathleen Semple Delaney for discussions on data collection, analysis and interpretation and for sharing her preliminary results with us. Dustin Wood and Julie Yee provided comments that greatly improved this manuscript. This work was supported by the U.S. Geological Survey, Western Ecological Research Center.


Use of trade names does not imply the endorsement of the U.S. Geological Survey.


  1. Andrews KM, Gibbons JW (2005) How do highways influence snake movement? Behavioral responses to roads and vehicles. Copeia 4:772–782. doi: 10.1643/0045-8511(2005)005[0772:HDHISM]2.0.CO;2 CrossRefGoogle Scholar
  2. Ascensao F, Mira A (2007) Factors affecting culvert use by vertebrates along two stretches of road in southern Portugal. Ecol Res 22:57–66. doi: 10.1007/s11284-006-0004-1 CrossRefGoogle Scholar
  3. Baur A, Baur B (1990) Are roads barriers to dispersal in the land snail Arianta arbustorum? Can J Zool 68:613–617CrossRefGoogle Scholar
  4. Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252. doi: 10.1046/j.1523-1739.1998.98036.x CrossRefGoogle Scholar
  5. Beier P, Penrod KL, Luke C, Spencer WD, Cabanero C (2006) South coast missing linkages: restoring connectivity to wildlands in the largest metropolitan area in the United States. In: Crooks KR, Sanjayan MA (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 555–586Google Scholar
  6. Bohonak AJ, Roderick GK (2001) Dispersal of invertebrates among temporary ponds: are genetic estimates accurate? Isr J Zool 47:367–386. doi: 10.1560/HM51-9Y1V-QCRQ-CJP5 CrossRefGoogle Scholar
  7. Bolger DT, Suarez AV, Crooks KR, Morrison SA, Case TJ (2000) Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol Appl 10:1230–1248. doi: 10.1890/1051-0761(2000)010[1230:AIUHFI]2.0.CO;2 CrossRefGoogle Scholar
  8. Bond JE, Beamer DA, Lamb T, Hedin M (2006) Combining genetic and geospatial analyses to infer population extinction in mygalamorph spiders endemic to the Los Angeles region. Anim Conserv 9:145–158. doi: 10.1111/j.1469-1795.2006.00024.x CrossRefGoogle Scholar
  9. Busteed GT (2003) Effects of habitat fragmentation on reptiles and amphibians in coastal sage scrub and grassland communities. Thesis, California State University, NorthridgeGoogle Scholar
  10. Caltrans (2005) All traffic volumes on CSHS. California Department of Transportation, Traffic and Vehicle Data Systems Unit, SacramentoGoogle Scholar
  11. Case TJ, Fisher RN (2001) Measuring and predicting species presence: coastal sage scrub case study. In: Hunsaker CT, Goodchild MF, Friedl MA, Case TJ (eds) Spatial uncertainty in ecology: implications for remote sensing and GIS applications. Springer, New York, pp 47–71Google Scholar
  12. Chatterjee SN, Vijayan K, Roy GC, Nair CV (2004) ISSR profiling of genetic variability in the ecotypes of Antheraea mylitta Drury, the tropical tasar silkworm. Russ J Genet 40:152–159. doi: 10.1023/B:RUGE.0000016988.08342.c0 CrossRefGoogle Scholar
  13. Chatterjee S, Taraphdar T, Mohandas TP (2005) Molecular analysis of divergence in tachinid uzi (Exorista sorbillans) populations in India. Genetica 125:1–15. doi: 10.1007/s10709-004-6192-0 PubMedCrossRefGoogle Scholar
  14. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x PubMedCrossRefGoogle Scholar
  15. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836. doi: 10.2307/2286407 CrossRefGoogle Scholar
  16. Clevenger AP (2005) Conservation value of wildlife crossings: measures of performance and research directions. Gaia Ecol Perspect Sci Soc 14:124–129Google Scholar
  17. Clevenger AP, Waltho N (2000) Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv Biol 14:47–56. doi: 10.1046/j.1523-1739.2000.00099-085.x CrossRefGoogle Scholar
  18. Connor EF, Hafernik J, Levy J, Moore VF, Rickman JK (2002) Insect conservation in an urban biodiversity hotspot: the San Francisco Bay Area. J Insect Conserv 6:247–259. doi: 10.1023/A:1024426727504 CrossRefGoogle Scholar
  19. Cook WM, Faeth SH (2006) Irrigation and land use drive ground arthropod community patterns in an urban desert. Environ Entomol 35:1532–1540. doi: 10.1603/0046-225X(2006)35[1532:IALUDG]2.0.CO;2 CrossRefGoogle Scholar
  20. Crandall KA (1994) Intraspecific cladogram estimation: accuracy at higher levels of divergence. Syst Biol 43:222–235. doi: 10.2307/2413463 Google Scholar
  21. Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969PubMedGoogle Scholar
  22. Epps CW, Palsboll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038. doi: 10.1111/j.1461-0248.2005.00804.x CrossRefGoogle Scholar
  23. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetic 131:479–491Google Scholar
  24. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  25. Field LH, Bailey WJ (1997) Sound production in primitive Orthoptera from Western Australia: sounds used in defense and social communication in Ametrus sp. and Hadrogryllacris sp. (Gryllacrididae: Orthoptera). J Nat Hist 31:1127–1141. doi: 10.1080/00222939700770591 CrossRefGoogle Scholar
  26. Fisher RN, Suarez AV, Case TJ (2002) Spatial patterns in the abundance of the coastal horned lizard. Conserv Biol 16:205–215. doi: 10.1046/j.1523-1739.2002.00326.x CrossRefGoogle Scholar
  27. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  28. Gagnon JW, Theimer TC, Dodd NL, Manzo AL, Schweinsburg RE (2007) Effects of traffic on elk use of wildlife underpasses in Arizona. J Wildl Manage 71:2324–2328. doi: 10.2193/2006-445 CrossRefGoogle Scholar
  29. Gerlach G, Musolf K (2000) Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv Biol 14:1066–1074. doi: 10.1046/j.1523-1739.2000.98519.x CrossRefGoogle Scholar
  30. Gilpin ME, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Soulé ME (ed) Conservation biology. Sinauer Associates Inc., Massachusetts, pp 19–34Google Scholar
  31. Grandberry S, Nagano C (1998) Protecting a flower-loving fly. Endang Species Bull 23:24–25Google Scholar
  32. Hannon ER, Hafernik JE (2006) Reintroduction of the rare damselfly Ischnura gemina (Odonata: Coenagrionidae) into an urban California park. J Insect Conserv 11:141–149. doi: 10.1007/s10841-006-9027-8 CrossRefGoogle Scholar
  33. Hochkirch A, Witzenberger KA, Teerling A, Niemeyer F (2007) Translocation of an endangered insect species, the field cricket (Gryllus campestris Linnaeus, 1758) in northern Germany. Biodivers Conserv 16:3597–3607. doi: 10.1007/s10531-006-9123-9 CrossRefGoogle Scholar
  34. Holsinger KE, Lewis PO, Dey DK (2002) A Bayesian approach to inferring population structure from dominant markers. Mol Ecol 11:1157–1164. doi: 10.1046/j.1365-294X.2002.01512.x PubMedCrossRefGoogle Scholar
  35. Hunter RD, Fisher RN, Crooks KR (2003) Landscape-level connectivity in coastal southern California, USA, as assessed through carnivore habitat suitability. Nat Areas J 23:302–314Google Scholar
  36. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation By Distance, Web Service. BMC Genet 6:13. doi: 10.1186/1471-2156-6-13 PubMedCrossRefGoogle Scholar
  37. Kar PK, Vijayan K, Mohandas TP, Nair CV, Saratchandra B, Thangavelu K (2005) Genetic variability and genetic structure of wild and semi-domestic populations of tasar silkworm (Antheraea mylitta) ecorace Daba as revealed through ISSR markers. Genetica 125:173–183. doi: 10.1007/s10709-005-7002-z PubMedCrossRefGoogle Scholar
  38. Keller I, Largiader CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc Lond Biol Sci 270:417–423. doi: 10.1098/rspb.2002.2247 CrossRefGoogle Scholar
  39. Kettlewell HBD (1973) The evolution of industrial melanism. Clarendon Press, OxfordGoogle Scholar
  40. Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495. doi: 10.1046/j.1365-294x.1999.00726.x PubMedCrossRefGoogle Scholar
  41. Keyghobadi N, Roland J, Matter SF, Strobeck C (2005) Among and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proc R Soc Biol Sci 272:553–560. doi: 10.1098/rspb.2004.2976 CrossRefGoogle Scholar
  42. Kim HH (1992) Urban heat-island. Int J Remote Sens 13:2319–2336. doi: 10.1080/01431169208904271 CrossRefGoogle Scholar
  43. Kleist AM, Lancia RA, Doerr PD (2007) Using video surveillance to estimate wildlife use of a highway underpass. J Wildl Manage 71:2792–2800. doi: 10.2193/2007-070 CrossRefGoogle Scholar
  44. Latter BDH (1973) The island model of population differentiation: a general solution. Genetics 73:147–157PubMedGoogle Scholar
  45. Legendre L, Legendre P (1983) Numerical ecology. Elsevier Scientific Pub. Co., AmsterdamGoogle Scholar
  46. Leon-Cortes JL, Cowley MJR, Thomas CD (1999) Detecting decline in a formerly widespread species: how common is the common blue butterfly Polyommatus icarus? Ecography 22:643–650. doi: 10.1111/j.1600-0587.1999.tb00513.x CrossRefGoogle Scholar
  47. Longcore T, Mattoni R, Pratt G, Rich C (2000) On the perils of ecological restoration: lessons from the El Segundo blue butterfly. In: Keeley J, Baer-Keeley M, Fotheringham CJ (eds) Interface between ecology and land development in California. U.S. Geological Survey Open-File Report 00-62, SacramentoGoogle Scholar
  48. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99. doi: 10.1111/j.1365-294X.1994.tb00109.x PubMedCrossRefGoogle Scholar
  49. Mader HJ (1984) Animal habitat isolation by roads and agricultural fields. Biol Conserv 29:81–96. doi: 10.1016/0006-3207(84)90015-6 CrossRefGoogle Scholar
  50. Maltagliati F, Casu M, Lai T, Sareri DI, Casu D, Galletti MC et al (2005) Taxonomic distinction of Ophelia barquii and O. bicornis (Annelida: Polychaeta) in the Mediterranean as revealed by ISSR markers and the number of nephridiopores. J Mol Biol 85:835–841Google Scholar
  51. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  52. Mattoni R, Powers N (2000) The Palos Verdes blue: an update. Endang Spec Bull 25:18–19Google Scholar
  53. Mattoni R, Pratt G, Longcore T, Emmel JF, George JN (1997) The endangered quino checkerspot butterfly, Euphydryas editha quino (Lepidoptera: Nymphalidae). J Res Lepid 34:99–118Google Scholar
  54. Mattoni R, Longcore T, Krenova Z, Lipman A (2003) Mass rearing the endangered Palos Verdes blue butterfly (Glaucopsyche lygdamus palosverdesensis: Lycaenidae). J Res Lepid 37:55–67Google Scholar
  55. Maxwell D, Jennings S (2005) Power of monitoring programmes to detect decline and recovery of rare and vulnerable fish. J Appl Ecol 42:25–37. doi: 10.1111/j.1365-2664.2005.01000.x CrossRefGoogle Scholar
  56. Mayer F, Kerth G (2005) Microsatellite evolution in the mitochondrial genome of Bechstein’s bat (Myotis bechsteinii). J Mol Evol 61:408–416. doi: 10.1007/s00239-005-0040-4 PubMedCrossRefGoogle Scholar
  57. McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA Forest Service General Technical Report PNW-351Google Scholar
  58. McIntyre NE, Hostetler ME (2001) Effects of urban land use on pollinator (Hymenoptera: Apoidea) communities in a desert metropolis. Basic Appl Ecol 2:209–218. doi: 10.1078/1439-1791-00051 CrossRefGoogle Scholar
  59. McIntyre NE, Rango J, Fagan WF, Faeth SH (2001) Ground arthropod community structure in a heterogeneous urban environment. Landsc Urban Plan 52:257–274. doi: 10.1016/S0169-2046(00)00122-5 CrossRefGoogle Scholar
  60. McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890. doi: 10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2 CrossRefGoogle Scholar
  61. Merriam GM, Kozakiewicz M, Tsuchiya E, Hawley K (1989) Barriers as boundaries for metapoplulations and demes of Peromyscus leucopus in farm landscapes. Lands Ecol 2:227–236. doi: 10.1007/BF00125093 CrossRefGoogle Scholar
  62. Miller MP (1993) Tools for Population Genetic Aanalysis (TFPGA) program for windows. Department of Biological Sciences, Northern Arizona University, FlagstaffGoogle Scholar
  63. Nardi F, Carapelli A, Fanciulli PP, Dallai R, Frati F (2001) The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: evidence for heteroplasmy and tRNA translocations. Mol Biol Evol 18:1293–1304PubMedGoogle Scholar
  64. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323. doi: 10.1073/pnas.70.12.3321 PubMedCrossRefGoogle Scholar
  65. Ng SJ, Dolea JW, Sauvajot RM, Riley SPD, Valonec TJ (2003) Use of highway undercrossings by wildlife in southern California. Biol Conserv 115:499–507. doi: 10.1016/S0006-3207(03)00166-6 CrossRefGoogle Scholar
  66. Noss RF (1987) Protecting natural areas in a fragmented landscapes. Nat Areas J 7:2–13Google Scholar
  67. Ockinger E, Smith HG (2008) Do corridors promote dispersal in grassland butterflies and other insects? Lands Ecol 23:27–40. doi: 10.1007/s10980-007-9167-6 CrossRefGoogle Scholar
  68. Orange County Southern Subregion Natural Community Conservation Plan (2006)
  69. Pollock JF (2006) Detecting population declines over large areas with presence-absence, time-to-encounter, and count survey methods. Conserv Biol 20:882–892. doi: 10.1111/j.1523-1739.2006.00342.x PubMedCrossRefGoogle Scholar
  70. Posada D (1999) Collapse. Department of Zoology, Brigham Young University, Provo, UTGoogle Scholar
  71. Pouyat RV, Parmelee RW, Carreiro MM (1994) Environmental effects of forest soil-invertebrate and fungal densities in oak stands along an urban–rural land use gradient. Pedobiologia (Jena) 38:385–399Google Scholar
  72. Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland-urban interface in the United States. Ecol Appl 15:799–805. doi: 10.1890/04-1413 CrossRefGoogle Scholar
  73. Redak R (2000) Arthropods and multispecies habitat conservation plans: are we missing something? Environ Manage 26(S1):S97–S107PubMedGoogle Scholar
  74. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi: 10.1046/j.1523-1739.2003.01236.x CrossRefGoogle Scholar
  75. Riley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK et al (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741. doi: 10.1111/j.1365-294X.2006.02907.x PubMedCrossRefGoogle Scholar
  76. Rubinoff D (2001) Evaluating the California gnatcatcher as an umbrella species for conservation of southern Callifornia coastal sage scrub. Conserv Biol 15:1374–1383. doi: 10.1046/j.1523-1739.2001.00176.x CrossRefGoogle Scholar
  77. Saccheri I, Kuusaari MMK, Vickman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly population. Nature 392:491–494. doi: 10.1038/33136 CrossRefGoogle Scholar
  78. San Diego Multiple Species Conservation Program (1998)
  79. Shafer CL (1995) Value and shortcomings of small reserves. Bioscience 45:80–88. doi: 10.2307/1312609 CrossRefGoogle Scholar
  80. Shochat E, Stefanov WL, Whitehouse MEA, Faeth SH (2004) Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Ecol Appl 14:268–280. doi: 10.1890/02-5341 CrossRefGoogle Scholar
  81. Snäll N, Huoponen K, Savontaus M-L, Ruohomäki K (2002) Tandem repeats and length variation in the mitochondrial DNA control region of Epirrita autumnata (Lepidoptera: Geometridae). Genome 45:855–861. doi: 10.1139/g02-058 PubMedCrossRefGoogle Scholar
  82. Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5:439–448. doi: 10.1023/ CrossRefGoogle Scholar
  83. Stewart KW (1997) Vibrational communication in insects. Epitome in the language of stoneflies? Am Entomol 43:81–89Google Scholar
  84. Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101. doi: 10.1016/S0169-5347(02)00044-7 CrossRefGoogle Scholar
  85. Suarez AV, Bogler DT, Case TJ (1998) Effects of fragmentation and invasion on native ant communities on coastal southern California. Ecology 79:2041–2056CrossRefGoogle Scholar
  86. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedGoogle Scholar
  87. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–596PubMedGoogle Scholar
  88. Taylor BL, Gerrodette T (1993) The uses of statistical power in conservation biology—the vaquita and northern spotted owl. Conserv Biol 7:489–500. doi: 10.1046/j.1523-1739.1993.07030489.x CrossRefGoogle Scholar
  89. Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Ann Miss Bot Garden 77:13–27. doi: 10.2307/2399621 CrossRefGoogle Scholar
  90. Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30. doi: 10.1046/j.1523-1739.2000.99084.x CrossRefGoogle Scholar
  91. Tyler G, Balsberg-Påhlsson AM, Bengtsson G, Bååth E, Tranvik L (1989) Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water Air Soil Pollut 47:189–215. doi: 10.1007/BF00279327 CrossRefGoogle Scholar
  92. Vandergast AG, Bohonak AJ, Weissman DB, Fisher RN (2007) Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol Ecol 16:997–992. doi: 10.1111/j.1365-294X.2006.03216.x CrossRefGoogle Scholar
  93. Varvio S, Chakraborty R, Nei M (1986) Genetic variation in subdivided populations and conservation genetics. Heredity 57:189–198. doi: 10.1038/hdy.1986.109 PubMedCrossRefGoogle Scholar
  94. Vellman PF (1997) Data desk. Data Descriptions Inc., IthacaGoogle Scholar
  95. Vos CC, Antonisse-De Jong AG, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608. doi: 10.1046/j.1365-2540.2001.00865.x PubMedCrossRefGoogle Scholar
  96. Watts CH, Lariviere M-C (2004) The importance of urban reserves for conserving beetle communities: a case study from New Zealand. J Insect Conserv 8:47–58. doi: 10.1023/B:JICO.0000027504.92727.ab CrossRefGoogle Scholar
  97. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370. doi: 10.2307/2408641 Google Scholar
  98. Weissman DB (2001a) North and Central America Jerusalem crickets (Orthoptera: Stenopelmatidae): taxonomy, distribution, life cycle, ecology and related biology of the American species. In: Field LH (ed) The Biology of Wetas, King Crickets and Their Allies. CABI Pub., Wallingford, NY, pp 57–72Google Scholar
  99. Weissman DB (2001b) Communication and reproductive behaviour in North American Jerusalem crickets (Stenopelmatus) (Orthoptera: Stenopelmatidae). In: Field LH (ed) The Biology of Wetas, King Crickets and Their Allies. CABI Pub., Wallingford, NY, pp 351–375Google Scholar
  100. Western Riverside County Multiple Species Habitat Conservation Plan (2003)
  101. Wolfe AD (2005) ISSR techniques for evolutionary biology. Methods Enzymol 395:134–144. doi: 10.1016/S0076-6879(05)95009-X PubMedCrossRefGoogle Scholar
  102. Wolfe AD, Liston A (1998) Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis DE, Soltis PS, Doyle JJ (eds) Plant molecular systematics II. Kluwer, Boston, pp 43–86Google Scholar
  103. Yeh FC, Yang RC, Boyle T (1999) POPGENE Microsoft windows-based freeware for population genetic analysis. University of Alberta, EdmontonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Amy G. Vandergast
    • 1
    Email author
  • Eric A. Lewallen
    • 1
    • 2
  • Joseph Deas
    • 1
    • 3
  • Andrew J. Bohonak
    • 4
  • David B. Weissman
    • 5
  • Robert N. Fisher
    • 1
  1. 1.U.S. Geological SurveyWestern Ecological Research CenterSan DiegoUSA
  2. 2.Department of Biological SciencesUniversity of Toronto at ScarboroughTorontoCanada
  3. 3.Insect ScienceThe University of ArizonaTucsonUSA
  4. 4.Department of BiologySan Diego State UniversitySan DiegoUSA
  5. 5.Department of EntomologyCalifornia Academy of SciencesSan FranciscoUSA

Personalised recommendations