Journal of Insect Conservation

, Volume 13, Issue 2, pp 223–230 | Cite as

Species-specific distribution of two sympatric Maculinea butterflies across different meadow edges

  • Péter Batáry
  • Ádám Kőrösi
  • Noémi Örvössy
  • Szilvia Kövér
  • László Peregovits
Original Paper

Abstract

An important consequence of habitat fragmentation is the increase of edge habitats. Environmental factors in the edges are different from those in the interiors, which causes changes in the distribution of plant and animal species. We aimed to study how edges affect the distribution of two butterfly species within meadow fragments. We therefore investigated the effect of distance from edge and edge type (road edge versus tree edge) on two sympatric large blue species (Maculinea teleius and M. nausithous). Our results showed that edge type had contrasting effects on the two species. M. teleius favoured both interiors and road edges, while M. nausithous preferred the tree edges. In the case of the latter species a strong positive edge effect was also found. This kind of within-habitat niche segregation is probably related to the different microenvironmental conditions at the edges. Foodplant density did not seem to limit the distribution of these species. Our results suggest that interiors of meadows are important for M. teleius, while tree edges maintain the habitats of the regionally rarer butterfly, M. nausithous.

Keywords

Edge effect Foodplant Habitat use Myrmecophily Niche segregation 

References

  1. Als TD, Vila R, Kandul NP, Nash DR, Yen SH, Hsu YF, Mignault AA, Boomsma JJ, Pierce NE (2004) The evolution of alternative parasitic life histories in large blue butterflies. Nature 432:386–390PubMedCrossRefGoogle Scholar
  2. Anton C, Musche M, Hula V, Settele J (2005) Which factors determine the population density of the predatory butterfly Maculinea nausithous. In: Settele J, Kühn E, Thomas JA (eds) Studies on the ecology and conservation of butterflies in europe. Vol 2. Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft, Sofia, pp 57–59Google Scholar
  3. Anton C, Musche M, Hula V, Settele J (2008) Myrmica host-ants limit the density of the ant-predatory large blue Maculinea nausithous. J Insect Conserv (in press). doi: 10.1007/s10841-007-9091-8Google Scholar
  4. Báldi A (1999) Microclimate and vegetation edge effects in a reedbed in Hungary. Biodivers Conserv 8:1697–1706CrossRefGoogle Scholar
  5. Báldi A, Kisbenedek T (1999) Species-specific distribution of reed-nesting passerine birds across reed-bed edges: effects of spatial scale and edge type. Acta Zool Acad Sci H 45:97–114Google Scholar
  6. Batáry P, Örvössy N, Kőrösi Á, Vályi Nagy M, Peregovits L (2007) Microhabitat preferences of Maculinea teleius (Lepidoptera: Lycaenidae) in a mosaic landscape. Eur J Entomol 104:731–736Google Scholar
  7. Bergman K-O (1999) Habitat utilization by Lopinga achine (Nymphalidae: Satyrinae) larvae and ovipositing females: implications for conservation. Biol Conserv 88:69–74CrossRefGoogle Scholar
  8. Bourn NAD, Thomas JA (1993) The ecology and conservation of the brown argus butterfly Aricia agestis in Britain. Biol Conserv 63:67–74CrossRefGoogle Scholar
  9. Conradt L, Roper TJ (2006) Nonrandom movement behavior at habitat boundaries in two butterfly species: implications for dispersal. Ecology 87:125–132PubMedCrossRefGoogle Scholar
  10. Dauber J, Wolters V (2004) Edge effects on ant community structure and species richness in an agricultural landscape. Biodivers Conserv 13:901–915CrossRefGoogle Scholar
  11. Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355CrossRefGoogle Scholar
  12. DeVries PJ, Murray D, Lande R (1997) Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest. Biol J Linn Soc 62: 343–364CrossRefGoogle Scholar
  13. Duelli P, Studer M, Marchand I, Jakob S (1990) Population movements of arthropods between natural and cultivated areas. Biol Conserv 54:193–207CrossRefGoogle Scholar
  14. Elmes GW, Thomas JA, Wardlaw JC, Hochberg ME, Clarke RT, Simcox DJ (1998) The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J Insect Conserv 2:67–78CrossRefGoogle Scholar
  15. Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman Hall, Boca RatonGoogle Scholar
  16. Figurny E, Woyciechowski M (1998) Flowerhead selection for oviposition by females of the sympatric butterfly species Maculinea teleius and M nausithous (Lepidoptera: Lycenidae). Entomol Gen 23:215–222Google Scholar
  17. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  18. Glinka U, Settele J (2005) The effect of ant communities and spatial pattern for Maculinea nausithous. In: Settele J, Kühn E, Thomas JA (eds) Studies on the ecology and conservation of butterflies in Europe. Vol 2. Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft, Sofia, p 72Google Scholar
  19. Ide J-Y (2002) Mating behaviour and light conditions cause seasonal changes in the dispersal pattern of the satyrine butterfly Lethe diana. Ecol Entomol 27:33–40CrossRefGoogle Scholar
  20. Johst K, Drechsler M, Thomas JA, Settele J (2006) Influence of mowing on the persistence of two large blue butterfly species. J Appl Ecol 43:333–342CrossRefGoogle Scholar
  21. Jose S, Gillespie AR, George SJ, Kumar BM (1996) Vegetation responses along edge-to-interior gradients in a high altitude tropical forest in peninsular India. Forest Ecol Manage 87:51–62CrossRefGoogle Scholar
  22. Kitahara M (2004) Butterfly community composition and conservation in and around a primary woodland of Mount Fuji, central Japan. Biodivers Conserv 13:917–942CrossRefGoogle Scholar
  23. Kőrösi Á (2005) Habitat-use of wetland Maculinea species—a case study. In: Settele J, Kühn E, Thomas JA (eds) Studies on the ecology and conservation of butterflies in Europe. Vol 2. Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft, Sofia, p 132Google Scholar
  24. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900CrossRefGoogle Scholar
  25. Kuefler D, Haddad NM (2006) Local versus landscape determinants of butterfly movement behaviors. Ecography 29:549–560CrossRefGoogle Scholar
  26. Kühn E, Gwillym S, Thomas J , Settele J (2005) Bibliography on Maculinea ecology and related topics (state: September 2005). In: Settele J, Kühn E, Thomas JA (eds) Studies on the ecology and conservation of butterflies in Europe. Vol 2. Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft, Sofia, pp 259–283Google Scholar
  27. Kunin WE (1998) Biodiversity at the edge: a test of the importance of spatial ‘‘mass effects’’ in the Rothamsted Park Grass experiments. Proc Natl Acad Sci USA 95:207–212PubMedCrossRefGoogle Scholar
  28. Loritz H, Settele J (2005) Changing a butterfly’s landscape. persistence of the Dusky Large Blue in managed grasslands. In: Settele J, Kühn E, Thomas JA (eds) Studies on the ecology and conservation of butterflies in Europe. Vol 2. Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft, Sofia, pp 221–224Google Scholar
  29. Magura T, Ködöböcz V. (2007) Carabid assemblages in fragmented sandy grasslands. Agric Ecosyst Environ 199: 396–400CrossRefGoogle Scholar
  30. Matlack GR (1993) Microenvironment variation within and among forest edge sites in the Eastern United States. Biol Conserv 66:185–194CrossRefGoogle Scholar
  31. Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106:259–271CrossRefGoogle Scholar
  32. Meffe GK, Carroll CR (1994) Principles of conservation biology. Sinauer Associates, SunderlandGoogle Scholar
  33. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62CrossRefGoogle Scholar
  34. Nowicki P, Pępkowska A, Kudłek J, Skórka P, Witek M, Woyciechowski M (2005a) Landscape scale research in butterfly population ecology. Maculinea case study. In: Settele J, Kühn E, Thomas JA (eds) Studies on the ecology and conservation of butterflies in Europe. Vol 2. Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft, Sofia, pp 140–143Google Scholar
  35. Nowicki P, Witek M, Skórka P, Settele J, Woyciechowski M (2005b) Population ecology of the endangered butterflies Maculinea teleius and M nausithous and the implications for conservation. Popul Ecol 47:193–202CrossRefGoogle Scholar
  36. Nowicki P, Pępkowska A, Kudłek J, Skórka P, Witek M, Settele J, Woyciechowski M (2007) From metapopulation theory to conservation recommendations: lessons from spatial occurrence and abundance patterns of Maculinea butterflies. Biol Conserv 140: 119–129CrossRefGoogle Scholar
  37. R Development Core Team (2005) R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna. http://www.R-project.org
  38. Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70:840–852CrossRefGoogle Scholar
  39. Ross JA, Matter SF, Roland J (2005) Edge avoidance and movement of the butterfly Parnassius smintheus in matrix and non-matrix habitats. Landsc Ecol 20:127–135CrossRefGoogle Scholar
  40. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  41. Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72:533–545CrossRefGoogle Scholar
  42. Schultz CB, Crone EE (2001) Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82:1879–1892CrossRefGoogle Scholar
  43. Standovár T, Primack RB (2001) A természetvédelmi biológia alapjai (Principles of conservation biology). Nemzeti Tankönyvkiadó, BudapestGoogle Scholar
  44. Tartally A, Csősz S (2004) Data on the ant hosts of the Maculinea butterflies (Lepidoptera: Lycenidae) of Hungary. Természetvédelmi Közlemények 11:309–317Google Scholar
  45. Tartally A, Varga Z (2005) Host-ant specificity of Maculinea species in Hungary, connections with parasitoids and host plants. In: Settele J, Kühn E, Thomas JA (eds) Studies on the ecology and conservation of butterflies in Europe. Vol 2. Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft, Sofia, pp 94–98Google Scholar
  46. Thomas JA (1984) The behaviour and habitat requirement of Maculinea nausithous (the Dusky Large Blue Butterfly) and M teleius (the Scarce Large Blue) in France. Biol Conserv 28:325–347CrossRefGoogle Scholar
  47. Thomas JA (1991) Relationship between butterflies and ants. In: Dennis RLH (ed) Ecology of butterflies in Britain. Oxford Scientific Publications, Oxford, pp 149–154Google Scholar
  48. Thomas JA, Elmes GW (1998) Higher productivity at the cost of increased host-specificity when Maculinea butterfly larvae exploit ant colonies through trophallaxis rather than by predation. Ecol Entomol 23:454–464CrossRefGoogle Scholar
  49. Thomas JA, Elmes GW (2001) Food-plant niche selection rather than the presence of ant nests explains oviposition patterns in the myrmecophilous butterfly genus Maculinea. Proc R Soc Lond B Biol 268:471–477CrossRefGoogle Scholar
  50. Thomas JA, Settele J (2004) Evolutionary biology: butterfly mimics of ants. Nature 432:283–284PubMedCrossRefGoogle Scholar
  51. Thomas JA, Elmes GW, Wardlaw JC, Woyciechowski M (1989) Host specificity among Maculinea butterflies in Myrmica ant nests. Oecologia 79:452–457CrossRefGoogle Scholar
  52. Thomas JA, Clarke RT, Elmes GW, Hochberg ME (1998) Population dynamics in the genus Maculinea (Lepidoptera: Lycenidae). In: Dempster JP, McLean IFG (eds) Insect populations. Chapman & Hall, London, pp 261–290Google Scholar
  53. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239CrossRefGoogle Scholar
  54. Urbina-Cardona JN, Olivares-Pérez M, Reynoso VH (2006) Herpetofauna diversity and microenvironment correlates across a pasture-edge-interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico. Biol Conserv 132:61–75CrossRefGoogle Scholar
  55. Van Swaay CAM, Warren MS (1999) Red data book of European butterflies (Rhopalocera). Nature and environment series no. 99. Council of Europe, StrasbourgGoogle Scholar
  56. Wynhoff I (1998) The recent distribution of the European Maculinea species. J Insect Conserv 2:15–27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Péter Batáry
    • 1
    • 2
  • Ádám Kőrösi
    • 3
  • Noémi Örvössy
    • 1
  • Szilvia Kövér
    • 1
  • László Peregovits
    • 1
  1. 1.Hungarian Natural History MuseumBudapestHungary
  2. 2.AgroecologyGeorg-August UniversityGöttingenGermany
  3. 3.Animal Ecology Research Group of the Hungarian Academy of Sciences and the Hungarian Natural History MuseumBudapestHungary

Personalised recommendations