Advertisement

Journal of Insect Conservation

, Volume 13, Issue 2, pp 165–175 | Cite as

Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape

  • Annette Heisswolf
  • Stefanie Reichmann
  • Hans Joachim Poethke
  • Boris Schröder
  • Elisabeth Obermaier
Original Paper

Abstract

Fragmentation, deterioration, and loss of habitat patches threaten the survival of many insect species. Depending on their trophic level, species may be differently affected by these factors. However, studies investigating more than one trophic level on a landscape scale are still rare. In the present study we analyzed the effects of habitat size, isolation, and quality for the occurrence and population density of the endangered leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) and its egg parasitoid, the hymenopteran wasp Foersterella reptans Nees (Hymenoptera: Tetracampidae). C. canaliculata is strictly monophagous on meadow sage (Salvia pratensis), while F. reptans can also parasitize other hosts. Both size and isolation of habitat patches strongly determined the occurrence of the beetle. However, population density increased to a much greater extent with increasing host plant density ( = habitat quality) than with habitat size. The occurrence probability of the egg parasitoid increased with increasing population density of C. canaliculata. In conclusion, although maintaining large, well-connected patches with high host plant density is surely the major conservation goal for the specialized herbivore C. canaliculata, also small patches with high host plant densities can support viable populations and should thus be conserved. The less specialized parasitoid F. reptans is more likely to be found on patches with high beetle density, while patch size and isolation seem to be less important.

Keywords

Habitat fragmentation Herbivore Host plant density Metapopulation Multitrophic 

Notes

Acknowledgements

We are grateful to Robert Biedermann for providing the ‘Isolator’ software and to Thomas Hovestadt and Oliver Mitesser for statistical advice. Thomas O. Crist as well as an anonymous referee gave valuable comments on an earlier version of this manuscript. We thank the government of Lower Franconia (Bavaria, Germany) for the permission to work and to collect beetles in the nature reserve. This study used results from the MOSAIK-project which was financially supported by the German Federal Ministry of Education and Research (BMBF, grant 01LN 0007). A. Heisswolf was financially supported through a scholarship granted by the Evangelisches Studienwerk e.V. Villigst.

References

  1. Bach CE (1988) Effects of host plant patch size on herbivore density: patterns. Ecology 69:1090–1102CrossRefGoogle Scholar
  2. Bach M (1851) Entwickelungs-Geschichte von Cassida austriaca Hbr. Entomol Z 12:158–159Google Scholar
  3. Bacher S, Luder S (2005) Picky predators and the function of the faecal shield of a cassidine larva. Funct Ecol 19:263–272CrossRefGoogle Scholar
  4. Bayerisches Landesamt für Umweltschutz (2003) Rote Liste gefährdeter Tiere Bayerns. Schriftenreihe des Landesamts für Umweltschutz, vol 166. Bayerisches Landesamt für Umweltschutz, Augsburg, GermanyGoogle Scholar
  5. Berggren Å, Birath B, Kindvall O (2002) Effect of corridors and habitat edges on dispersal behavior, movement rates, and movement angles in Roesel’s bush-cricket (Metrioptera roeseli). Conserv Biol 16:1562–1569CrossRefGoogle Scholar
  6. Binzenhöfer B, Schröder B, Strauss B, Biedermann R, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths - the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259CrossRefGoogle Scholar
  7. Bourgeois J, Scherdlin P (1899) Catalogue des Coléoptères des Vosges et des regions limitrophes. Decker, ColmarGoogle Scholar
  8. Bundesamt für Naturschutz (1998) Rote Liste gefährdeter Tiere Deutschlands. Schriftenreihe für Landschaftspflege und Naturschutz, vol 55. Landwirtschaftsverlag, Münster, GermanyGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  10. Clarke RT, Thomas JA, Elmes GW, Hochberg ME (1997) The effects of spatial patterns in habitat quality on community dynamics within a site. Proc R Soc Lond B 264:347–354CrossRefGoogle Scholar
  11. Connor EF, Courtney AC, Yoder JM (2000) Individuals-area relationships: the relationship between animal population density and area. Ecology 81:734–748Google Scholar
  12. Cronin JT, Reeve JD (2005) Host–parasitoid spatial ecology: a plea for a landscape-level synthesis. Proc R Soc Lond B 272:2225–2235CrossRefGoogle Scholar
  13. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Cons 1:167–176CrossRefGoogle Scholar
  14. Dennis RLH, Shreeve TG, van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966CrossRefGoogle Scholar
  15. Eber S (2001) Multitrophic interactions: the population dynamics of spatially structured plant-herbivore-parasitoid systems. Basic Appl Ecol 2:27–33CrossRefGoogle Scholar
  16. Elsner O (1994) Geplantes Naturschutzgebiet ‘Südlicher Haßbergetrauf’ im Landkreis Haßberge. Gutachten im Auftrag der Regierung von Unterfranken. Institut für Vegetationskunde und Landschaftsökologie, Hemhofen-ZeckernGoogle Scholar
  17. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142PubMedCrossRefGoogle Scholar
  18. Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74CrossRefGoogle Scholar
  19. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  20. Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716CrossRefGoogle Scholar
  21. Goodwin BJ, Fahrig L (2002) How does landscape structure influence landscape connectivity? Oikos 99:552–570CrossRefGoogle Scholar
  22. Graser K (1984) Thüringer Funde von Cassida (U. G. Lordiconia RTTR) canaliculata LAICH. 1781 (Col., Chrysomelidae). Entomol Nachr Ber 28:86–87Google Scholar
  23. Gustafson EJ, Gardner RH (1996) The effect of landscape heterogeneity on the probability of patch colonization. Ecology 77:94–107CrossRefGoogle Scholar
  24. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMedGoogle Scholar
  25. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  26. Hanski I, Gaggiotti OE (2004) Ecology, genetics, and evolution of metapopulations. Elsevier, AmsterdamGoogle Scholar
  27. Hanski I, Ovaskainen O (2003) Metapopulation theory for fragmented landscapes. Theor Popul Biol 64:119–127PubMedCrossRefGoogle Scholar
  28. Harrell FE Jr (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New YorkGoogle Scholar
  29. Harrell FE Jr (2005) Design: Design package. R package version 2.0-12. http://biostat.mc.vanderbilt.edu/s/Design
  30. Harrell FE Jr, with contributions from many other users (2006) Hmisc: Harrell Miscellaneous. R package version 3.1-1. http://biostat.mc.vanderbilt.edu/s/Hmisc
  31. Haynes KJ, Dillemuth FP, Anderson BJ, Hakes AS, Jackson HB, Jackson SE, Cronin JT (2007) Patch geography surpasses patch quality in its effects on herbivore dispersal and distribution. Oecologia 151:431–441PubMedCrossRefGoogle Scholar
  32. Heikkinen RK, Luoto M, Kuussaari M, Pöyry J (2005) New insights into butterfly-environment relationships using partitioning methods. Proc R Soc Lond B 272:2203–2210CrossRefGoogle Scholar
  33. Hein S, Voss J, Poethke HJ, Schröder B (2007) Habitat suitability models for the conservation of thermophilic grasshoppers and bush crickets – simple or complex? J Insect Conserv 11:221–240CrossRefGoogle Scholar
  34. Heisswolf A, Obermaier E, Poethke HJ (2005) Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space? Ecol Entomol 30:299–306CrossRefGoogle Scholar
  35. Heisswolf A, Poethke HJ, Obermaier E (2006) Multitrophic influences on egg distribution in a specialized leaf beetle at multiple spatial scales. Basic Appl Ecol 7:565–576CrossRefGoogle Scholar
  36. Hunter MD (2002) Landscape structure, habitat fragmentation, and the ecology of insects. Agric For Entomol 4:159–166CrossRefGoogle Scholar
  37. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New YorkCrossRefGoogle Scholar
  38. Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol [online] 1, 4. http://www.consecol.org/vol1/iss1/art4/
  39. Krauss J, Steffan-Dewenter I, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474CrossRefGoogle Scholar
  40. Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:355–361CrossRefGoogle Scholar
  41. Kuhn W, Kleyer M (1999) A statistical habitat model for the blue winged grasshopper (Oedipoda caerulescens) considering the habitat connectivity. Z Ökol Nat.schutz 8:207–218Google Scholar
  42. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between––and reconciliation of––‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671CrossRefGoogle Scholar
  43. Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401CrossRefGoogle Scholar
  44. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, LondonGoogle Scholar
  45. McGarigal K (2001) Fragstats: spatial pattern analysis program for quantifying landscape structure. Version 3.3. http://www.umass.edu/landeco/research/fragstats/fragstats.html
  46. Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515Google Scholar
  47. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145CrossRefGoogle Scholar
  48. Nagelkerke NJD (1991) A note on the general definition of the coefficient of determination. Biometrika 78:691–692CrossRefGoogle Scholar
  49. R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  50. Reitter E (1912) Fauna Germanica, Käfer, Lutz, StuttgartGoogle Scholar
  51. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99PubMedCrossRefGoogle Scholar
  52. Rosenberg DK, Noon BR, Meslow EC (1997) Biological corridors: form, function, and efficacy. BioScience 47:677–687CrossRefGoogle Scholar
  53. Rudner M, Biedermann R, Schröder B, Kleyer M (2007) Integrated grid based ecological and economic (INGRID) landscape model – a tool to support landscape management decisions. Environ Modell Softw 22:177–187CrossRefGoogle Scholar
  54. Schröder B (2006) ROC & AUC-Calculation – evaluating the predictive performance of habitat models. http://brandenburg.geoecology.uni-potsdam.de/users/schroeder/download.html
  55. Steinhausen W (1949) Morphologie, Biologie und Ökologie der Entwicklungsstadien der in Niedersachsen heimischen Schildkäfer (Cassidinae Chrysomelidae Coleoptera) und deren Bedeutung für die Landwirtschaft. Dissertation, TU Braunschweig, GermanyGoogle Scholar
  56. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293PubMedCrossRefGoogle Scholar
  57. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B 268:1791–1796CrossRefGoogle Scholar
  58. Thomas JA, Clarke RT, Elmes GW, Hochberg ME (1998) Population dynamics in the genus Maculinea. In: Dempster JP, McLean IFG (eds) Insect population dynamics: in theory and practice. Chapman and Hall, London, pp 261–290Google Scholar
  59. Trautner J, Geigenmüller K, Bense U (1989) Käfer beobachten, bestimmen. Neumann-Neudamm, MelsungenGoogle Scholar
  60. Tscharntke T, Brandl R (2004) Plant-insect interactions in fragmented landscapes. Annu Rev Entomol 49:405–430PubMedCrossRefGoogle Scholar
  61. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239CrossRefGoogle Scholar
  62. van Nouhuys S, Hanski I (2002) Multitrophic interactions in space: metacommunity dynamics in fragmented landscapes. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 124–147Google Scholar
  63. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New YorkGoogle Scholar
  64. Walsh C, Mac Nally R (2007) hier.part: hierarchical Partitioning. R package version 1.0-2. http://cran.r-project.org
  65. Wencker J, Silbermann G (1866) Catalogue des Coléoptères de l’Alsace et des Vosgues. Silbermann, StrasbourgGoogle Scholar
  66. Wiegand T, Moloney KA, Naves J, Knauer F (1999) Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. Am Nat 154:605–627PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Annette Heisswolf
    • 1
    • 2
  • Stefanie Reichmann
    • 1
    • 3
  • Hans Joachim Poethke
    • 1
  • Boris Schröder
    • 4
  • Elisabeth Obermaier
    • 1
    • 5
  1. 1.Field Station FabrikschleichachUniversity of WürzburgRauhenebrachGermany
  2. 2.Department of Biology, Section of EcologyUniversity of TurkuTurkuFinland
  3. 3.Department of Biology, Section of ZoologyUniversity of RegensburgRegensburgGermany
  4. 4.Institute of GeoecologyUniversity of PotsdamPotsdamGermany
  5. 5.Department of Biology, Section of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany

Personalised recommendations