Journal of Insect Conservation

, Volume 12, Issue 6, pp 677–688 | Cite as

Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area

  • Stefan Eichel
  • Thomas Fartmann
Original Paper


We analysed the habitat preferences of adult stages and oviposition electivity of Melitaea aurelia in calcareous grasslands in the Diemel Valley (central Germany) to assess the key factors for successful management. Egg-laying and adult habitats of M. aurelia were more or less congruent. Oviposition electivity at the host plant (Plantago media) was best explained by a combination of host plant quantity and vegetation structure. Habitat quality, isolation and patch area explained 86% of the current patch occupancy of M. aurelia. With M. aurelia preferentially inhabiting transitional vegetation types, management requires a balance between abandonment and disturbance. Disturbances provide open soil that facilitates germination of the host plant Plantago media. On the other hand, immature and adult stages of M. aurelia perform best on calcareous grasslands with a high amount of host plants and low disturbance intensity. Traditional rough grazing regimes seem to be the most favourable tool for developing the necessary spatial and temporal heterogeneity in patches. The best results may be achieved by rotational grazing where only a subset of inhabited patches is grazed intensively each year. Our analysis of patch occupancy indicates that it would be desirable to restore patches in close proximity to occupied sites.


Central Germany Logistic regression Management Oviposition site electivity Patch occupancy Plantago media 



Our grateful thanks to Nils Anthes, Gabriel Hermann, Norbert Hölzel, and Martin Konvička for helpful comments on an earlier version of this paper. The study was partly funded by the Akademie für ökologische Landeserforschung in Westfalen (AÖL).


  1. Anthes N, Fartmann T, Hermann G (2003a) Wie lässt sich der Rückgang des Goldenen Scheckenfalters (Euphydryas aurinia) in Mitteleuropa stoppen? Erkenntnisse aus populationsökologischen Studien in voralpinen Niedermoorgebieten und der Arealentwicklung in Deutschland. Naturschutz und Landschaftsplanung 35:279–287Google Scholar
  2. Anthes N, Fartmann T, Hermann G, Kaule G (2003b) Combining larval habitat quality and metapopulation structure – the key for successful management of prealpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185CrossRefGoogle Scholar
  3. Balmer O, Erhardt A (2000) Consequences of succession on extensively grazed grasslands for Central European butterfly communities: rethinking conservation practices. Conserv Biol 14:746–757CrossRefGoogle Scholar
  4. Bink FA (1992) Ecologische Atlas van de Dagvlinders van Nordwest-Europa. Schuyt & Co, Haarlem, The NetherlandsGoogle Scholar
  5. BLfU (Bayerisches Landesamt für Umweltschutz) (2001) Artenschutzkartierung Bayern: Arbeitsatlas Tagfalter. Bayerisches Landesamt für Umweltschutz, Augsburg, GermanyGoogle Scholar
  6. Bourn NAD, Thomas JA (2002) The challenge of conserving grassland insects at the margins of their range in Europe. Biol Conserv 104:285–292CrossRefGoogle Scholar
  7. Bourn NAD, Warren MS (1997) Species action pan—Glanville Fritillary Melitaea cinxia. Butterfly Conservation, DorsetGoogle Scholar
  8. Brökel G (1984) Erlinghausen, eine Dorfgeschichte. Selbstverlag, Gemeinde Erlinghausen, GermanyGoogle Scholar
  9. BUTT (Butterflies Under Threat Team) (1986) The management of chalk grassland for butterflies. Focus on Nature Conserv 17:1–80Google Scholar
  10. Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the speckled wood butterfly (Pararge aegeria L.). Landscape Ecol 18:561–573CrossRefGoogle Scholar
  11. Clarke RT, Thomas JA, Elmes GW, Hochberg ME (1997) The effects of spatial patterns in habitat quality on community dynamics within a site. Proc R Soc Lond, Ser B: Biol Sci 264:347–354CrossRefGoogle Scholar
  12. Crone EE, Schultz CB (2003) Movement behavior and minimum patch size for butterfly population persistence. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies. Ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 561–576Google Scholar
  13. Dennis RLH (1995) Euchloe ausonia (Hübner) (Lepidoptera: Pieridae) oviposition on Brassica nigra (L.) Koch (Cruciferae): big immature plants are preferred. Entomol Gaz 46:253–255Google Scholar
  14. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176CrossRefGoogle Scholar
  15. Dennis RLH, Hodgson JG, Grenyer R, Shreeve TG, Roy DB (2004) Host plants and butterfly biology. Do host-plant strategies drive butterfly status? Ecol Entomol 29:1–16CrossRefGoogle Scholar
  16. Dennis RLH, Shreeve TG, Dyck H van (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426CrossRefGoogle Scholar
  17. Dennis RLH, Shreeve TG, Dyck H van (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966CrossRefGoogle Scholar
  18. Dolek M (1994) Der Einfluss der Schafbeweidung von Kalkmagerrasen in der Südlichen Frankenalb auf die Insektenfauna (Tagfalter, Heuschrecken). Agrarökologie 10:1–126Google Scholar
  19. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 1, Tagfalter I. Verlag Eugen Ulmer, Stuttgart, GermanyGoogle Scholar
  20. Ehrlich PR, Hanski I (eds) (2004) On the wings of checkerspots: a model system for population biology. Oxford University Press, OxfordGoogle Scholar
  21. Fartmann T (2004) Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales. Biozönologie von Tagfaltern und Widderchen in einer alten Hudelandschaft. Abh Westf Mus Naturkde 66:1–256Google Scholar
  22. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fenn 43:335–347Google Scholar
  23. Fartmann T, Mattes H (2003) Störungen als ökologischer Schlüsselfaktor beim Komma-Dickkopffalter (Hesperia comma). Abh Westf Mus Naturkde 65:131–148Google Scholar
  24. Fleishman E, Ray C, Sjörgen-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716CrossRefGoogle Scholar
  25. Fred MS, Brommer JE (2003) Influence of habitat quality and patch size on occupancy and persistence in two populations of the Apollo butterfly (Parnassius apollo). J Insect Conserv 7:85–98CrossRefGoogle Scholar
  26. García-Barros E, Fartmann T (accepted) Oviposition sites. In: Settele J, Konvička M, Shreeve TG, Dyck H van (eds) Ecology of butterflies in Europe. Cambridge University Press, CambridgeGoogle Scholar
  27. Gerken B, Meyer C (1994) Kalkmagerrasen in Ostwestfalen. Über Pflege und Entwicklung der Kalkmagerrasen in Ostwestfalen – Kreise Höxter, Paderborn und Lippe. LÖBF-Mitteilungen 3:32–40Google Scholar
  28. Haeck J (1992) Phytosociology of Plantago habitats in the Netherlands and the relation with habitat characteristics. In: Kuiper PJC, Bos M (eds) Plantago: A multidisciplinary study. Ecol. Stud. 89:20–29Google Scholar
  29. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  30. Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–762CrossRefGoogle Scholar
  31. Hermann G, Steiner R (1997) Eiablage- und Larvalhabitat des Komma-Dickkopffalters (Hesperia comma Linné, 1758) in Baden-Württemberg (Lepidoptera, Hesperiidae). Carolinea 55:35–42Google Scholar
  32. Hozak R, Meyer C (1998) Konzepte zur Wiederbelebung der Hüteschäferei auf Kalkmagerrasen und Heiden. LÖBF-Mitteilungen 4:22–28Google Scholar
  33. Kleyer M, Biedermann R, Henle K, Obermaier E, Poethke H-J, Poschlod P, Schröder B, Settele J, Vetterlein D (2007) Mosaic cycles in agricultural landscapes of Northwest Europe. Basic Appl. Ecol. 8:295–309CrossRefGoogle Scholar
  34. Konvička M, Hula V, Fric Z (2003) Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae): What can be learned from vegetation composition and architecture? Eur J Entomol 100:313–322Google Scholar
  35. Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–342Google Scholar
  36. Küer A, Fartmann T (2005) Prominent shoots are preferred: microhabitat preferences of the Alcon Blue (Maculinea alcon) in Northern Germany (Lycaenidae). Nota Lepidopterol 27:309–319Google Scholar
  37. Leopold P (2001) Schmetterlingszönosen ausgewählter Kalk-Magerrasen im Saale-Unstrut-Gebiet (Sachsen-Anhalt) unter besonderer Berücksichtigung der Habitate des Segelfalters und der Berghexe. Unpublished Diploma Thesis, Institute of Landscape Ecology, University of Münster, Münster, GermanyGoogle Scholar
  38. Lewis OT, Hurford C (1997) Assessing the status of the marsh fritillary butterfly (Eurodryas aurinia): an example from Glamorgan, UK. J Insect Conserv 1:159–166CrossRefGoogle Scholar
  39. Lucan V, Eger W (1996) Der Einfluss des Menschen auf die Pflanzendecke. In: Becker W, Frede A, Lehmann W (eds) Pflanzenwelt zwischen Eder und Diemel. Flora des Landkreises Waldeck-Frankenberg mit Verbreitungsatlas. Naturschutz in Waldeck-Frankenberg 5:46–53Google Scholar
  40. Maes D, Vanreusel W, Talloen W, Dyck H van (2004) Functional conservation units for the endangered alcon blue butterfly Maculinea alcon in Belgium (Lepidoptera: Lycaenidae). Biol Conserv 120:229–241CrossRefGoogle Scholar
  41. Michels C, Woike M (1994) Schafbeweidung und Naturschutz. Pflege von Heiden, Mooren, Kalkmagerrasen und Grünlandflächen. LÖBF-Mitteilungen 3:16–25Google Scholar
  42. Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515CrossRefGoogle Scholar
  43. Müller-Westermeier G (1999) Klimaatlas der Bundesrepublik Deutschland. Teil 1. Lufttemperatur, Niederschlag, Sonnenscheindauer. Deutscher Wetterdienst, Offenbach, GermanyGoogle Scholar
  44. Murphy DD, Wahlberg N, Hanski I, Ehrlich PR (2004) Introducing checkerspots: taxonomy and ecology. In: Ehrlich PR, Hanski I (eds) On the wings of checkerspots: a model system for population biology. Oxford University Press, Oxford, pp 17–33Google Scholar
  45. Nieminen M, Siljander M, Hanski I (2004) Structure and dynamics of Melitaea cinxia metapopulations. In: Ehrlich PR, Hanski I (eds) On the wings of checkerspots: a Model system for population biology. Oxford University Press, Oxford, pp 63–91Google Scholar
  46. Osborne KH, Redak RA (2000) Microhabitat conditions associated with the distribution of postdiapause larvae of Euphydryas editha quino (Lepidoptera: Nymphalidae). Ann Entomol Soc Am 93:110–114CrossRefGoogle Scholar
  47. Peintinger H, Philippi G (1996) Plantaginaceae, Wegerichartige. In: Sebald O, Seybold S, Philippi G, Wörz A (eds) Die Farn- und Blütenpflanzen Baden-Württembergs. Band 5: Spezieller Teil (Spermatophyta, Unterklasse Asteridae). Buddlejaceae bis Caprifoliaceae. Eugen Ulmer, Stuttgart, pp 247–255Google Scholar
  48. Porter K (1992) Eggs and egg-laying. In: Dennis R (eds) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 46–72Google Scholar
  49. Pretscher P (1998) Rote Liste der Großschmetterlinge (Macrolepidoptera). Schriftenr Landschaftspfl Naturschutz 55:87–11Google Scholar
  50. Rennwald E (ed) (2002) Verzeichnis und Rote Liste der Pflanzengesellschaften Deutschlands – mit Datenservice auf CD-Rom. – Schriftenr. Vegetationskde 35:1–800Google Scholar
  51. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99PubMedCrossRefGoogle Scholar
  52. Schultz CB (2001) Restoring resources for an endangered butterfly. J Appl Ecol 38:1007–1019CrossRefGoogle Scholar
  53. Schwarzwälder B, Lörtscher M, Erhardt A, Zettel J (1997) Habitat utilization by the Heath Fritillary butterfly, Mellicta athalia ssp. celadussa (Rott.) (Lepidoptera: Nymphalidae) in montane grasslands of different management. Biol Conserv 82:157–165CrossRefGoogle Scholar
  54. Seifert C (1994) Biozönologische Untersuchungen an tagaktiven Schmetterlingen in Nordosthessen. Tuexenia 14:455–478Google Scholar
  55. Shreeve TG, Dennis RLH, Dyck H van (2004) Resources, habitats and metapopulations – whither reality? Oikos 106:404–408CrossRefGoogle Scholar
  56. Swaay C van, Warren M (1999) Red data book of European butterflies (Rhopalocera). Nat Environ 99:1–260Google Scholar
  57. Swaay C van, Warren M (eds) (2003) Prime butterfly areas in Europe: priority sites for conservation. National Reference Centre for Agriculture, Nature and Fisheries, Ministry of Agriculture, Nature Management and Fisheries, Wageningen, The NetherlandsGoogle Scholar
  58. Thomas CD (1995) Ecology and conservation of butterfly metapopulations in the fragmented British landscape. In: Pullin AS (ed) Ecology and conservation of butterflies. Chapman & Hall, London, pp 46–68Google Scholar
  59. Thomas CD, Thomas JA, Warren MS (1992) Distribution of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–567CrossRefGoogle Scholar
  60. Thomas JA (1991) Rare species conservation: case studies of European butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell Scientific, Oxford, pp 149–197Google Scholar
  61. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc Lond, Ser B: Biol Sci 360:339–357CrossRefGoogle Scholar
  62. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond, Ser B: Biol Sci 268:1791–1796CrossRefGoogle Scholar
  63. Thomas JA, Clarke RT (2004) Extinction rates and butterflies. Science 305:1563–1564CrossRefGoogle Scholar
  64. Thomas JA, Simcox DJ, Wardlaw JC, Elmes GW, Hochberg ME, Clarke RT (1998) Effects of latitude, altitude and climate on the habitat and conservation of the endangered butterfly Maculinea arion and its Myrmica ant hosts. J Insect Conserv 2:39–46CrossRefGoogle Scholar
  65. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881PubMedCrossRefGoogle Scholar
  66. Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslicht-Planung. Hofmann, Schorndorf, GermanyGoogle Scholar
  67. van der Aart PJM, Vulto JC (1992) General ecology. In: Kuiper PJC, Bos M (eds) Plantago: A multidisciplinary Study. Ecol. Stud. 89:6Google Scholar
  68. Wahlberg N, Klemetti T, Hanski I (2002) Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography 25:224–232CrossRefGoogle Scholar
  69. WallisDeVries MF (2004) A quantitative conservation approach for the endangered butterfly Maculinea alcon. Conserv Biol 18:489–499Google Scholar
  70. WallisDeVries MF, Poschlod P, Willems JW (2002) Challenges for the conservation of calcareous grasslands in Northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  71. Warren MS (1994) The UK status and suspected metapopulation structure of a threatened European butterfly, the marsh fritillary (Eurodryas aurinia). Biol Conserv 67:239–249CrossRefGoogle Scholar
  72. Warren MS, Stephens DEA (1989) Habitat design and management for butterflies. The Entomologist 108:123–134Google Scholar
  73. Weiss SB, Murphy DD, White RR (1988) Sun, slope and butterflies: topographic determination of habitat quality for Euphydryas editha. Ecology 69:1486–1496CrossRefGoogle Scholar
  74. Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 63:23–29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Community Ecology, Institute of Landscape EcologyUniversity of MünsterMünsterGermany

Personalised recommendations