Advertisement

Journal of Insect Conservation

, Volume 12, Issue 1, pp 3–14 | Cite as

The Duke of Burgundy butterfly and its dukedom: larval niche variation in Hamearis lucina across Central Europe

  • Nils Anthes
  • Thomas Fartmann
  • Gabriel Hermann
Original Paper

Abstract

In order to improve our understanding of habitat preferences and optimal management of open woodland insects, we analyse patch occupancy and oviposition electivity of the endangered Duke of Burgundy butterfly, Hamearis lucina, in three regions across German habitat types. Some newly available forest clearings created by a severe winter storm in the Schönbuch region were colonised within 2 years, whereas some suitable patches remained unoccupied for several years. We discuss how small population sizes, limited patch connectivity, and habitat quality may contribute to such an intermediate colonisation power. Across study regions, we document differences in oviposition site electivity. On calcareous grassland in the Diemeltal, shaded Primula plants on western slopes were preferentially used, probably to avoid desiccation of the natal food plant. To the contrary, sun-exposed Primula stands were preferred in forest clearings in the Schönbuch and calcareous fens in the Allgäu. In these regions, the risk of desiccation is low, but the overall cool and moist microclimate conditions may hamper larval development in shaded conditions, favouring oviposition at sites with maximum exposition to solar radiation. Optimal management strategies depend on the abiotic and biotic conditions and conservation priorities for the given region and habitat type, and we suggest management regimes that promise to sustain suitable H. lucina habitat at a landscape-level.

Keywords

Butterfly conservation Coppicing Larval ecology Metapopulation Oviposition electivity 

Notes

Acknowledgements

Holger Loritz provided support during field work in the Allgäu. An earlier version of the manuscript benefited from comments by Matthew Oates, Tim H. Sparks and an anonymous referee.

References

  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure – the key for successful management of prealpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185CrossRefGoogle Scholar
  2. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millenium atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  3. Bergman KO (2001) Population dynamics and the importance of habitat management for conservation of the butterfly Lopinga achine. J Appl Ecol 38:1303–1313CrossRefGoogle Scholar
  4. Bergström A, Janz N, Nylin S (2006) Putting more eggs in the best basket: clutch-size regulation in the comma butterfly. Ecol Entomol 31:255–260CrossRefGoogle Scholar
  5. Bourn NAD, Warren M (1998) Species action plan: Duke of Burgundy. Butterfly Conservation, WarehamGoogle Scholar
  6. Brys R, Jacquemyn H, Endels P, Blust Gd, Hermy M (2004) The effects of grassland management on plant performance and demography in the perennial herb Primula veris. J Appl Ecol 41:1080–1091CrossRefGoogle Scholar
  7. Buckley GP (1992) Ecology and management of coppice woodlands. Chapman & Hall, LondonGoogle Scholar
  8. Cant ET, Smith AD, Reynolds DR, Osborne JL (2005) Tracking butterfly flight paths across the landscape with harmonic radar. Proc R Soc Lond B 272:785–790CrossRefGoogle Scholar
  9. Davies ZG, Wilson RJ, Brereton TM, Thomas CD (2005) The re-expansion and improving status of the silver-spotted skipper butterfly (Hesperia comma) in Britain: a metapopulation success story. Biol Conserv 124:189–198CrossRefGoogle Scholar
  10. Davies ZG, Wilson RJ, Coles S, Thomas CD (2006) Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. J Anim Ecol 75:247–256PubMedCrossRefGoogle Scholar
  11. Dennis RLH, Hodgson JG, Grenyer R, Shreeve TG, Roy DB (2004) Host plants and butterfly biology. Do host-plant strategies drive butterfly status? Ecol Entomol 29:12–26CrossRefGoogle Scholar
  12. Dennis RLH, Shreeve TG, Arnold HR, Roy DB (2005a) Does diet breadth control herbivorous insect distribution size? Life history and resource outlets for specialist butterflies. J Insect Conserv 9:187–200CrossRefGoogle Scholar
  13. Dennis RLH, Shreeve TG, van Dyck H (2005b) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966CrossRefGoogle Scholar
  14. Dierschke H (1994) Pflanzensoziologie. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  15. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 2, Tagfalter II. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  16. Ehrlen J, Syrjanen K, Leimu R, Begona Garcia M, Lehtila K (2005) Land use and population growth of Primula veris: an experimental demographic approach. J Appl Ecol 42:317–326CrossRefGoogle Scholar
  17. Emmet AM, Heath J (1989) The moths and butterflies of Great Britain and Ireland, vol 7. Harley Books, ColchesterGoogle Scholar
  18. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fennici 43:335–347Google Scholar
  19. Fartmann T, Mattes H (2003) Störungen als ökologischer Schlüsselfaktor beim Komma-Dickkopffalter (Hesperia comma). Abh Westf Mus Naturkde 65:131–148Google Scholar
  20. Fordyce JA, Nice CC (2004) Geographic variation in clutch size and a realized benefit of aggregative feeding. Evolution 58:447–450PubMedGoogle Scholar
  21. Freese A, Benes J, Bolz R, Cizek O, Dolek M, Geyer A, Gros P, Konvicka M, Liegl A, Stettmer C (2006) Habitat use of the endangered butterfly Euphydryas maturna and forestry in Central Europe. Anim Conserv 9:388–397CrossRefGoogle Scholar
  22. Garling B (1984) Hamearis lucina L., der Braune Würfelfalter: Lebensraum, Flugzeiten und Entwicklungsdaten (Lep.: Riodinidae). Ent Z 94:321–336Google Scholar
  23. Goltz C (1978) Die Zucht von Hamearis lucina L., Brauner Würfelfalter (Lep., Nemeobiidae). Mitt. Arbeitsgem. rhein.-westf. Lepidopterologen 1:61–62Google Scholar
  24. Hanski I (1999) Metapopulation ecology, 1st edn. Oxford University Press, OxfordGoogle Scholar
  25. Hanski I, Heino M (2003) Metapopulation-level adaptation of insect host plant preference and extinction-colonization dynamics in heterogenous landscapes. Theor Popul Biol 64:281–290PubMedCrossRefGoogle Scholar
  26. Hanski I, Singer MC (2001) Extinction-colonization dynamics and host-plant choice in butterfly metapopulations. Am Nat 158:343–353CrossRefGoogle Scholar
  27. Hellmann JJ (2002) The effect of an environmental change on mobile butterfly larvae and the nutritional quality of their hosts. J Anim Ecol 71:925–936CrossRefGoogle Scholar
  28. Hermann G, Anthes N (2003) Werden Populationen des Goldenen Scheckenfalters (Euphydryas aurinia, Rottemburg, 1775) durch Beweidung gefördert oder beeinträchtigt? Artenschutzreport Jena 13:24–33Google Scholar
  29. Hermann G, Steiner R (1997) Eiablage- und Larvalhabitat des Komma-Dickkopffalters (Hesperia comma Linné 1758). Carolinea 55:35–42Google Scholar
  30. Lederbogen D, Rosenthal G, Scholle D, Trautner J, Zimmermann B, Kaule G (2004) Allmendweiden in Südbayern: Naturschutz durch landwirtschaftliche Nutzung. In: Angewandte Landschaftsökologie, vol 62Google Scholar
  31. León-Cortés JL, Lemmon JJ, Thomas CD (2003) Ecological dynamics of extinct species in empty habitat networks. 1. The role of habitat pattern and quantity, stochasticity and dispersal. Oikos 102:449–464CrossRefGoogle Scholar
  32. Oates MR (2000) The Duke of Burgundy – conserving the intractable. Brit Wildlife 2:250–257Google Scholar
  33. Parmesan C (1996) Climate and species’ range. Nature 382:765–766CrossRefGoogle Scholar
  34. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shift in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583CrossRefGoogle Scholar
  35. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  36. Roy DB, Thomas JA (2003) Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia 134:439–444PubMedGoogle Scholar
  37. Scholle D, Hofmann C, Kaule G, Lederbogen D, Rosenthal G, Thumm U, Trautner J (2002) Co-operative grazing systems (“Allmende”): an alternative concept for the management of endangered open and semi-open landscapes. In: Redecker B, Fink P, Härdtle W, Riecken U, Schröder E (eds) Pasture landscapes and nature conservation. Springer, Berlin, pp 387–398Google Scholar
  38. Singer MC (1983) Determinants of multiple host use by a phytophagous insect population. Evolution 37:189–403CrossRefGoogle Scholar
  39. Singer MC (2000) Reducing ambiguity in describing plant-insect interactions: “preference”, “acceptability” and “electivity”. Ecol Lett 3:159–162CrossRefGoogle Scholar
  40. Singer MC (2003) Spatial and temporal patterns of checkerspot butterfly – host plant associations: the diverse roles of oviposition preference. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterlies. Ecology and evolution taking flight. University of Chicago Press, Chicago, pp 207–228Google Scholar
  41. Singer MC (2004) Measurement, correlates, and importance of oviposition preference in the life of checkerspots. In: Ehrlich PR, Hanski I (eds) On the wings of checkerspots. A model system for population biology. Oxford University Press, Oxford, pp 113–137Google Scholar
  42. Singer MC, Lee JR (2000) Discrimination within and between host species by a butterfly: implications for the design of preference experiments. Ecol Lett 3:101–105CrossRefGoogle Scholar
  43. Sparks TH, Porter K, Greatorex-Davies JN, Hall ML, Marrs RH (1994) The choice of oviposition sites in woodland by the Duke of Burgundy butterfly Hamearis lucina in England. Biol Conserv 70:257–264CrossRefGoogle Scholar
  44. Stefanescu C, Penuelas J, Filella I (2003) Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob Change Biol 9:1494–1506CrossRefGoogle Scholar
  45. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE, Wagener M (2004a) Extinction risk from climate change. Nature 427:145–149PubMedCrossRefGoogle Scholar
  46. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B 268:1791–1796CrossRefGoogle Scholar
  47. Thomas JA, Morris MG (1994) Patterns, mechanisms and rates of decline among UK invertebrates. Phil Trans R Soc Lond B 344:47–54CrossRefGoogle Scholar
  48. Thomas JA, Simcox DJ, Wardlaw JC, Elmes GW, Hochberg ME, Clarke RT (1998) Effects of latitude, altitude and climate on the habitat and conservation of the endangered butterfly Maculinea arion and its Myrmica ant hosts. J Insect Conserv 2:39–46CrossRefGoogle Scholar
  49. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004b) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881PubMedCrossRefGoogle Scholar
  50. Thompson JN (1998) The evolution of diet breadth: monophagy and polyphagy in swallowtail butterflies. J Evol Biol 11:563–578CrossRefGoogle Scholar
  51. Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslicht-Planung., Schorndorf (Hofmann)Google Scholar
  52. van Swaay C, Warren M (1999) Red data book of European butterflies (Rhopalocera). In: Council of Europe, nature and environment, No. 99. Strasbourg, FranceGoogle Scholar
  53. Wahlberg N (2001) The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution 55:522–537PubMedCrossRefGoogle Scholar
  54. Warren M (1993a) A review of butterfly conservation in central southern Great Britain: I protection, evaluation and extinction in prime sites. Biol Conserv 64:25–35CrossRefGoogle Scholar
  55. Warren M (1993b) A review of butterfly conservation in central southern Great Britain: II site management and habitat selection of key species. Biol Conserv 64:37–49CrossRefGoogle Scholar
  56. Warren M, Thomas JA (1992) Butterfly responses to coppicing. In: Buckley GP (ed) Ecology and management of coppice woodlands. Chapman & Hall, London, pp 249–270Google Scholar
  57. Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496CrossRefGoogle Scholar
  58. Wikelski M, Moskowitz D, Adelman JS, Cochran J, Wilcove DS, May ML (2006) Simple rules guide dragonfly migration. Biol Lett 2:325–329PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Animal Evolutionary Ecology, Zoological InstituteEberhard-Karls Universität TübingenTübingenGermany
  2. 2.Department of Community Ecology, Institute of Landscape EcologyWestfälische Wilhelms-UniversitätMünsterGermany
  3. 3.Arbeitsgruppe für Tierökologie und PlanungFilderstadtGermany

Personalised recommendations