Advertisement

Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany

  • Jörg Müller
  • Heinz Bußler
  • Thomas Kneib
Original Paper

Abstract

Compared to agricultural land and spruce plantations, central European beech-oak forests are often relatively close to natural conditions. However, forest management may alter these conditions. In Steigerwald, southern Germany, a large beech-dominated forest area, three management intensities were applied during the past 30–70 years. Here, we examined the influence of management intensity on saproxylic beetles in >100-year old mature stands at 69 sampling plots in 2004. We sampled beetles using flight-window traps and time standard direct searches. The community structure based on presence/absence data changed remarkably along the gradient from unmanaged to low-intensity to high-intensity management, but these differences were not evident using abundance data from flight interception traps. Saproxylic species richness decreased in intensively managed forests. Elateridae and threatened species richness peaked in unmanaged forests and in forests under low-intensity management. Saproxylic species richness was dependent on certain micro-habitat factors. These factors were (1) the amount of dead wood for Elateridae, overall and threatened saproxylic beetle richness; (2) the amount of flowering plants for Cerambycidae; (3) the richness of wood-inhabiting fungi for Staphylinidae, Melandryidae and overall saproxylic beetle richness; and (4) the frequency of Fomes fomentarius for threatened species. Species richness was better explained by plot factors, such as dead wood or fungi, than by management intensity. These results suggest that the natural variation of dead wood niches (decay stages, snag sizes, tree cavities and wood-inhabiting fungi species) must be maintained to efficiently conserve the whole saproxylic beetle fauna of beech forests. Also, intensive management may alter the specialised saproxylic beetle community even if the initial tree-species composition is maintained, which was the case in our study. For monitoring the ecological sustainability of forest management we must focus on threatened species. If structures alone are sampled then the amount of dead wood is the best indicator for a rich saproxylic beetle fauna.

Keywords

Management intensity Beech forests Species richness Saproxylic beetles 

Notes

Acknowledgements

We wish to thank Adrian Fowles for constructive comments on the manuscript and linguistic corrections. We also thank two anonymous reviewers for helpful comments. The study was supported by the Bavarian State Institute for Forestry, Freising.

References

  1. Albrecht L (1991) Die Bedeutung des toten Holzes im Wald. Forstw Cbl 110:106–113CrossRefGoogle Scholar
  2. Alexander KNA (1999) Should dead wood be left in the sun or shade?. Brit Wildlife 10:342Google Scholar
  3. BayFORKLIM (1996) Klimaatlas von Bayern. Bayerischer Klimaforschungsverbund, c/o Metereologisches Institut der Universität München, MünchenGoogle Scholar
  4. Bense U (1995) Longhorn Beetles Illustrated key to the Cerambycidae and Vesperidae of Europe. Markgraf Verlag, GermanyGoogle Scholar
  5. Bense U (2005) Totholzkäferfauna im Bannwald “Bechtaler Wald”. WSG Baden-Württemberg 8:199–208Google Scholar
  6. Brustel PH (2004) Coléoptères saproxyliques et valeur biologique des forêts francaises. Colleciton dossiers forestiers 13:1–297Google Scholar
  7. Bußler H, Müller J (2004) Borkenkäfer in wärmegetönten Eichenmischwäldern Nordbayerns. Forst u Holz 59:175–178Google Scholar
  8. Chandler DS, Peck SB (1992) Diversity and seasonality of leiodid beetles (Coleoptera: Leiodidae) in an old-growth and a 40-year-old forest in New Hampshire. Environ Entomol 21:1283–1291Google Scholar
  9. Chandler DS, Peck SB (1992) Diversity and seasonality of leiodid beetles (Coleoptera: Leiodidae) in an old-growth and a 40-year-old forest in New Hampshire. Environ Entomol 21:1283–1291Google Scholar
  10. Davies ZG, Tyler C, Stewart GB, Pullin AS (2006) Are current management recommendations for conserving saproxylic invertebrates effective? Systematic Review No.17, Centre of Evidence-Based Conservation, University of Birmingham, Birmingham, UKGoogle Scholar
  11. Everitt B, Hothorn T (2006) A handbook of statistical analyses using R. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  12. Fahrmeir L, Kneib T, Lang S (2004) Penalized structured additive regression: a Bayesian perspective. Statist Sinica 14:731–761Google Scholar
  13. Fayt P, Dufrêne M, Branquart E, Hastir P, Pontégnie C, Henin J-M, Versteirt V (2006) Contrasting response of saproxylic insects to focal habitat resources: the example of long horn beetles and hoverflies in Belgian deciduous forests. J Insect Conserv 2006:129–150CrossRefGoogle Scholar
  14. Floren A, Linsenmair KE (2003) How do beetle assemblages respond to anthropogenic disturbance? In: Basset Y, Novotny V, Miller SE, Kitching RL (eds) Arthropods of tropical forests: spatio temporal dynamics and resource use in the canopy 190–197Google Scholar
  15. Freude H, Harde K, Lohse GA (1964–1983) Die Käfer Mitteleuropas. Goecke & Evers, KrefeldGoogle Scholar
  16. Goßner M (2004) Diversität und Struktur arborikoler Arthropodenzönosen fremdländischer und einheimischer Baumarten. Ein Beitrag zur Bewertung des Anbaus von Douglasie (Pseudostuga menziesii (Mirb.) Franco) und Roteiche (Quercus rubra L.). Neobiota 5:1–324Google Scholar
  17. Grove S (2000) Trunk window trapping: an effective technique for sampling tropical saproxylic insects. Memoirs Queensland Museum 46:149–160Google Scholar
  18. Grove S (2002a) The influence of forest management history on the integrity of the saproxylic beetle fauna in an australian lowland tropical rainforest. Biol Conserv 104:149–171CrossRefGoogle Scholar
  19. Grove S (2002b) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  20. Grove S, Stork NE (2000) An inordinate fondness for beetles. Invertebr Taxon 14:733–739CrossRefGoogle Scholar
  21. Gutowski JM (1986) Species composition and structure of the communities of longhorn beetles (Col., Cerambycidae) in virgin and managed stands of Tilio-Carpinetum stachetosum association in Bilowieza Forest (NE Poland). J Appl Entomol 102:380–391CrossRefGoogle Scholar
  22. Horion A (1974) Faunistik der mitteleuropäischen Käfer. Bd. XII Cerambycidae. ÜberlingenGoogle Scholar
  23. Hothorn T, Hornik K, van de Wiel MA, Zeilis A (2006a) Coin: Conditional Inference Procedures in a Lego System for Conditional Inference. Am Stat 60:257–263CrossRefGoogle Scholar
  24. Hothorn T, Hornik K, van de Wiel MA, Zeilis A (2006b) A Lego-System for Conditional Infernence. Am Stat 60:257–263CrossRefGoogle Scholar
  25. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211Google Scholar
  26. Jarzabek A (2006) Schatztruhen im Buchenwald. LWF aktuell 53:4–5Google Scholar
  27. Jongman RHG, Ter Braak CJF, Van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, CambridgeGoogle Scholar
  28. Jonsell M, Schröder M, Weslien J (2005) Saproxylic beetles and high stumps of spruce - fungal flora important for determining the species composition. Scand J For Res 20:54–63CrossRefGoogle Scholar
  29. Kaila L, Martikainen P, Punttila P, Yakolev E (1994) Saproxylic beetles (Coleoptera) on dead birch trunks decayed by different polypore species. Ann Zoo Fenn 31:97–107Google Scholar
  30. Kitching R, Orr AG, Thalib L, Mitchell H, Hopkins MS, Graham AW (2000) Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J Appl Ecol 37:284–297CrossRefGoogle Scholar
  31. Kneib T, Fahrmeir L (2006) Structured additive regression for categorical space-time data: a mixed model approach. Biometrics 62:109–118PubMedCrossRefGoogle Scholar
  32. Koch K (1992) Die Käfer Mitteleuropas. Ökologie, Bd. 3, Cerambycidae bis Curculionidae. Goecke & Evers, KrefeldGoogle Scholar
  33. Köhler F (1999) Untersuchungen zur Totholzkäferfauna in Naturwaldreservaten und Wirtschaftswald-Vergleichsflächen in der bayerischen Rhön. Beitr bayer Entomofaunistik 3:151–178Google Scholar
  34. Köhler F (2000) Totholzkäfer in Naturwaldzellen des nördlichen Rheinlands. Landesanstalt für Ökologie, Bodenordnung und Forsten / Landesamt für Agrarordnung Nordrhein-Westfalen, RecklinghausenGoogle Scholar
  35. Köhler F (2003) Vergleichende Untersuchungen zur Totholzkäferfauna (Coleoptera) in drei Naturwaldreservaten in Mecklenburg-Vorpommern. Mitt Forst Versuchswesen Meckl-Vorp (Schwerin) 4:7–64Google Scholar
  36. Köhler F, Klausnitzer B (1998) Verzeichnis der Käfer Deutschlands. DresdenGoogle Scholar
  37. Kölbel M (1999) Totholz in Naturwaldreservaten und Urwäldern. LWF aktuell 18:2–5Google Scholar
  38. Martikainen P, Siitonen J, Punttila P, Kaila L, Rauh J (2000) Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol Conserv 94:199–209CrossRefGoogle Scholar
  39. McCune B, Mefford MJ (1999) Multivariate Analysis of Ecological Data, 4.10. Gleneden Beach, Oregon, USAGoogle Scholar
  40. Müller J (2004) Welchen Beitrag leisten Naturwaldreservate zum Schutz von Waldvogelarten. Ornithol Anz 43:3–18Google Scholar
  41. Müller J (2005) Waldstrukturen als Steuergröße für Artengemeinschaften in kollinen bis submontanen Buchenwäldern. Dissertation Technische Universität München, München, http//mediatum.ub.tum.deGoogle Scholar
  42. Müller J, Bußler H, Bense U, Brustel H, Flechtner G, Fowles A, Kahlen M, Möller G, Mühle H, Schmidl J, Zabransky P (2005) Urwald relict species—Saproxylic beetles indicating structural qualities and habitat tradition. Waldökologie Online 2:106–113Google Scholar
  43. Müller J, Engel H, Blaschke M (2007) Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur J Forest Res in press.Google Scholar
  44. Nilsson SG, Niklasson M, Hedin J, Aronsson G, Gutowski JM, Linder P, Ljungberg H, Mikusinski G, Ranius T (2002) Densities of large living and dead trees in old-growth temperate and boreal forests. Forest Ecol Manag 161:189–204CrossRefGoogle Scholar
  45. Okland B, Bakke A, Hagvar S, Kvamme T (1996) What factors influence diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodiv Conserv 5:75–100CrossRefGoogle Scholar
  46. Okland RH (1990) Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia Suppl 1:233Google Scholar
  47. Oksanen J, Kindt R, O’Hara B (2005) Community Ecology Package 1.6–10Google Scholar
  48. Palm T (1950) Die Holz- und Rindenkäfer der nordschwedischen Laubbäume. Medd Fr Stat Skogforsknings-Inst 40.Google Scholar
  49. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  50. Ranius T (2002) Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol Conserv 103:85–91CrossRefGoogle Scholar
  51. Ranius T, Jansson N (2000) The influence of regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol Conserv 95:85–94CrossRefGoogle Scholar
  52. Schiegg K (2001) Saproxylic insect diversity of beech: limbs are richer than trunks. Forest Ecol Manage 149:295–304CrossRefGoogle Scholar
  53. Schmidl J, Bußler H (2004) Ökologische Gilden xylobionter Käfer Deutschlands. Naturschutz und Landschaftsplanung 36:202–218Google Scholar
  54. Schmidt O (2006) Totes Holz voller Leben. LWF aktuell 53:1Google Scholar
  55. Schmitt M (1992) Buchen-Totholz als Lebensraum für xylobionte Käfer. Waldhygiene 19:97–191Google Scholar
  56. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41Google Scholar
  57. Siitonen J, Saaristo L (2000) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biol Conserv 94:211–220CrossRefGoogle Scholar
  58. Similä M, Kouki J, Martikainen P, Uotila A (2002) Conservation of beetles in boreal pine forest: the effects of forest age and naturalness on species assemblages. Biol Conserv 106:19–27CrossRefGoogle Scholar
  59. Similä M, Kouki J, Martikainen P (2003) Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. Forest Ecol Manag 174:365–381CrossRefGoogle Scholar
  60. Speight MCD (1989) Saproxylic invertebrates and their conservation, Stransbourg Council of Europe. Nature Environ Series 42:1–79Google Scholar
  61. Stokland JN, Tomter SM, Söderberg U (2004) Development of Dead Wood Indicators for Biodiversity Monitoring: Experiences from Scandinavia. In: Travaglini D, Chirici G (eds) Proceedings of the Monitoring and Indicators of Forest Biodiversity in Europe - From Ideas to Operationality, Florence, pp 207–226Google Scholar
  62. Ter Braak CJF, Smilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  63. Väisänen RA, Biström O, Heliövaara K (1993) Sub-cortical Coleoptera in dead pines and spruces: is primeval species compostion maintained in managed forests? Biodiv Conserv 3:95–113Google Scholar
  64. Walentowski H, Gulder H-J, Kölling C, Ewald J, Türk W (2001) Regionale natürliche Waldzusammensetzung Bayerns - Überarbeitete Fassung 2001. LWF aktuell 31:KartenbeilageGoogle Scholar
  65. Westfall PH, Young SS (1993) On adjusting P-values for multiplicity. Biometrics 49:941–945CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Bavarian Forest NationalparkGrafenauGermany
  2. 2.Bayerische Landesanstalt für Wald und ForstwirtschaftFreisingGermany
  3. 3.Institut für StatistikLudwig-Maximilians-Universität MünchenMunchenGermany

Personalised recommendations