Journal of Insect Conservation

, Volume 11, Issue 4, pp 391–397

The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees

  • Robin F. A. Moritz
  • F. Bernhard Kraus
  • Per Kryger
  • Robin M. Crewe
Original Paper

Abstract

The density of wild honeybee colonies (Apis mellifera) in the African dry highland savannahs was estimated in three Nature Reserves in Gauteng, South Africa (Ezemvelo, Leeuwfontein, Suikerbosrand) based on the genotypes of drones which were caught at drone congregation areas. Densities were estimated to range between 12.4 and 17.6 colonies per square kilometer. In addition colony densities were estimated in two German National parks (Müritz and Hochharz) and a commercial mating apiary. The density of colonies was significantly lower at the German sampling sites with estimates of 2.4–3.2 colonies per square kilometer, which closely matches the nation-wide density of colonies kept by beekeepers. This shows that the densities of colonies observed in wild populations under the harsh conditions of the African dry savannahs exceeds that of Germany by far, in spite of intensive beekeeping. The intensity of apiculture in Europe is therefore unlikely to compensate for the loss of habitats suitable for wild honeybees due to agriculture, forestry and other cultivation of land.

Keywords

Apis Colony Abundance Drones Microsatellite DNA 

References

  1. Baudry E, Solignac M, Garnery L et al (1998) Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc R Soc Lond B 26:2009–2014CrossRefGoogle Scholar
  2. Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354CrossRefPubMedGoogle Scholar
  3. Cornuet JM, Aries F (1980) Number of sex alleles in a sample of honeybee colonies. Apidologie 11:87–93CrossRefGoogle Scholar
  4. Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B 258:1–7CrossRefGoogle Scholar
  5. von Frisch K (1967) The dance language and orientation of bees. Belknap Press of Harvard University Press, Cambridge MAGoogle Scholar
  6. Harrison JF, Taylor OR, Hall HG (2005) The flight physiology of reproductives of Africanized, European, and hybrid honeybees (Apis mellifera). Physiol Biochem Zool 78:153–162CrossRefPubMedGoogle Scholar
  7. Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  8. Kevan PG, Phillips TP (2001) The economic impacts of pollinator declines: an approach to assessing the consequences. Conserv Ecol 5:8Google Scholar
  9. Koeniger N, Koeniger G, Pechhacker H (2005) The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas. Insect Soc 52:31–35CrossRefGoogle Scholar
  10. Kraus B, Page RE (1995) Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California. Environ Entomol 24:1473–1480Google Scholar
  11. Kraus FB, Neumann P, Scharpenberg H et al (2003) Male mating success of honeybee colonies (Apis mellifera L.). J Evol Biol 16:903–913CrossRefGoogle Scholar
  12. Kraus FB, Neumann P, van Praagh J, Moritz RFA (2004) Sperm limitation and the evolution of extreme polyandry in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 55:494–501CrossRefGoogle Scholar
  13. McNally LC, Schneider SS (1996) Spatial distribution and nesting biology of colonies of the African honeybee Apis mellifera scutellata (Hymenoptera: Apidae) in Botswana, Africa. Environ Entomol 25:643–652Google Scholar
  14. Moritz RFA, Southwick EE (1992) Bees as superorganisms – an evolutionary reality. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  15. Moritz RFA, Härtel S, Neumann P (2005) The western honeybee (Apis mellifera L.): an invasive species? Ecoscience 12:289–301CrossRefGoogle Scholar
  16. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  17. Neumann P, van Praagh JP, Moritz RFA, Dustmann JH (1999) Testing the reliability of a potential island mating apiary using DNA microsatellites. Apidologie 30:257–276CrossRefGoogle Scholar
  18. Oldroyd BP, Thexton EG, Lawler SH, Crozier RH (1997) Population demography of Australian feral bees (Apis mellifera). Oecologia 111:381–387CrossRefGoogle Scholar
  19. Park SDE (2001) Trypanotolerance in West African Cattle and the population genetic effects of selection. Dissertation, University of DublinGoogle Scholar
  20. Raymond M, Rousset F (1995a) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  21. Raymond M, Rousset F (1995b) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249Google Scholar
  22. Roubik DW (1978) Competitive interactions between neotropical pollinators and Africanized honeybees. Science 201:1030–1032CrossRefPubMedGoogle Scholar
  23. Roubik DW (2000) Pollination system stability in tropical America. Conserv Biol 14:1235–1236CrossRefGoogle Scholar
  24. Roubik DW, Wolda H (2001) Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Popul Ecol 43:53–62CrossRefGoogle Scholar
  25. Ruttner F (1966) The life and flight activity of drones. Bee World 47:93–100Google Scholar
  26. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  27. Ruttner H, Ruttner F (1966) Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen. 3. Flugweite und Flugrichtung der Drohnen. Z Bienenforsch 8:332–354Google Scholar
  28. Ruttner F, Ruttner H (1972) Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen. V. Drohnensammelplätze und Paarungsdistanz. Apidologie 3:203–232CrossRefGoogle Scholar
  29. Schneider SS, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376CrossRefGoogle Scholar
  30. Seeley TD (1985) Honeybee ecology. Princeton University Press, PrincetonGoogle Scholar
  31. Solignac M, Vautrin D, Loiseau A et al (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera). Mol Ecol Notes 3:307–311CrossRefGoogle Scholar
  32. Statistisches Bundesamt Deutschland (2005) Umwelt-Bodenflächen nach Art der tatsächlichen Nutzung. http://www.destatis.de./basis/d/umw/ugrtab7.php. Cited 27 Sept 2006
  33. Taylor OR, Rowell GA (1987) Drone abundance, queen flight distance and the neutral mating model for the honey bee, Apis mellifera. In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized bees and bee mites. Ellis Hoorwood, Chichester, pp 173–183Google Scholar
  34. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100© as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  35. Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979CrossRefPubMedGoogle Scholar
  36. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  37. Williams JL (1987) Wind-directed pheromone trap for drone honey bees (Hymenoptera: Apidae). J Econ Entomol 80:532–536Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Robin F. A. Moritz
    • 1
    • 4
  • F. Bernhard Kraus
    • 2
  • Per Kryger
    • 3
    • 4
  • Robin M. Crewe
    • 4
  1. 1.Institut für BiologieMartin Luther Universität Halle-WittenbergHalle/SaaleGermany
  2. 2.Departamento Entomología TropicalEl Colegio de la Frontera SurTapachulaMexico
  3. 3.Department of Crop ProtectionResearch Centre Flakkebjerg, Danish Institute of Agricultural SciencesSlagelseDenmark
  4. 4.Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations