Journal of Insect Conservation

, 11:221

Habitat suitability models for the conservation of thermophilic grasshoppers and bush crickets—simple or complex?

  • Silke Hein
  • Julia Voss
  • Hans-Joachim Poethke
  • Schröder Boris
Original Paper


One goal of conservation biology is the assessment of effects of land use change on species distribution. One approach for identifying the factors, which determine habitat suitability for a species are statistical habitat distribution models. These models are quantitative and can be used for predictions in management scenarios. However, they often have one major shortcoming, which is their complexity. This means that they need several, often costly-to-determine parameters for predictions of species occurrence. We first used habitat suitability models to investigate and determine habitat preferences of three different Orthoptera species. Second, we compared the predictive powers of simple habitat suitability models considering only the ‘habitat type’ as predictor with more complex models taking different habitat factors into account. We found that the habitat type is the most reliable and robust factor, which determines the occurrence of the species studied. Thus, analyses of habitat suitability can easily be carried out on the basis of existing vegetation maps for the conservation of the three species under study. Our results can serve as a basis for the estimation of spatio-temporal distribution and survival probabilities of the species studied and might also be valuable for other species living in dry grasslands.


Conservation Habitat selection modelling Dry grassland Semi-arid grassland Model simplicity 


  1. Adler PB, Raff DA, Lauenroth WK (2001) The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128:465–479Google Scholar
  2. Aspinall RJ, Lees BG (1994) Sampling and analysis of spatial environmental data. In: Waugh TC, Healey RG (eds) Advances in GIS Research. Taylor and Francis, Southampton, pp 1086–1098Google Scholar
  3. Aubry S, Magnin F, Bonnet V, Preece RC (2005) Multi-scale altitudinal patterns in species richness of land snail communities in south-eastern France. J Biogeogr 32:985–998Google Scholar
  4. Augustin NH, Cummins RP, French DD (2001) Exploring spatial vegetation dynamics using logistic regression and a multinomial logit model. J Appl Ecol 38:991–1006Google Scholar
  5. Austin MP (1976) On non-linear species response models in ordination. Vegetatio 33:33–41Google Scholar
  6. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Modell 157:101–118Google Scholar
  7. Bakker JP (1989) Nature management by grazing and cutting. Kluwer Academic Publishers, DordrechtGoogle Scholar
  8. Bayerisches Landesamt für Umweltschutz: Biotopkartierung. Cited May 1997Google Scholar
  9. Bayerisches Landesamt für Umweltschutz: Rote Liste gefährdeter Springschrecken (Saltatoria) Bayerns. tatoria.pdf. Cited 2003Google Scholar
  10. Beaufoy G, Baldock D, Clark J (1994) The nature of farming: low intensity farming systems in nine European Countries. Institute for European Environment Polica, LondonGoogle Scholar
  11. Beck JR, Shultz EK (1986) The use of ROC curves in test performance evaluation. Arch Pathol Laboratory Medicine 110:13–20PubMedGoogle Scholar
  12. Bignal EM, McCracken DI (1996) Low-intensity farming systems in the conservation of the countyside. J Appl Ecol 33:413–424Google Scholar
  13. Binzenhöfer B, Schröder B, Biedermann R, Strauß B, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths–the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259Google Scholar
  14. Bio AMF, De Becker P, De Bie E, Huybrechts W, Wassen M (2002) Prediction of plant species distribution in lowland river valleys in Belgium: modelling species response to site conditions. Biodivers Conserv 11:2189–2216Google Scholar
  15. Bobbink R, Willems JH (1993) Restoration management of abandoned chalk grassland in the Netherlands. Biodivers Conserv 2:616–626Google Scholar
  16. Buckland ST, Burnham KP, Augustin NH (1997) Model selection: An integral part of inference. Biometrics 53:603–618Google Scholar
  17. Cabeza M, Araújo MB, Wilson RJ, Thomas CD, Cowley MJR, Moilanen A (2004) Combining probabilities of occurrence with spatial reserve design. J Appl Ecol 41:252–262Google Scholar
  18. Chambers BQ, Samways MJ (1998) Grasshopper response to a 40-year experimental burning and mowing regime, with recommendations for invertebrate conservation management. Biodivers Conserv 7:985–1012Google Scholar
  19. Cushman SA, McGarigal K (2002) Hierarchical, multi-scale decomposition of species environment relationships. Landscape Ecol 17:637–646Google Scholar
  20. Dennis RLH, Eales HT (1999) Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical and ecological data. Biol Conserv 7:295–302Google Scholar
  21. Detzel P (1998) Die Heuschrecken Baden-Württembergs. Stuttgart, UlmerGoogle Scholar
  22. Dufrene M, Legendre P (1991) Geographic structure and potential ecological factors in Belgium. J Biogeogr 18:257–266Google Scholar
  23. Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapmann and Hall, New YorkGoogle Scholar
  24. Elsner O (1994) Geplantes Naturschutzgebiet "Südlicher Hassbergtrauf" im Landkreis Hassberge. Institut für Vegetationskunde und Landschaftsökologie, ZeckernGoogle Scholar
  25. Fielding AH, Haworth PF (1995) Testing the generality of bird-habitat models. Conserv Biol 9:1466–1481Google Scholar
  26. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49Google Scholar
  27. Fleishman E, Mac Nally R, Fay JP (2003) Validation tests of predictive models of butterfly occurrence based on environmental variables. Conserv Biol 17:806–817Google Scholar
  28. Fraser RH (1998) Vertebrate species richness at the mesoscale: relative role of energy and heterogeneity. Glob Ecol Biogeogr 7:215–220Google Scholar
  29. Freeman MC, Bowen ZH, Crance JH (1997) Transferability of habitat suitability criteria for fishes in warmwater streams. N Am J Fish Manage 17:20–31Google Scholar
  30. Fuller RM (1987) The changing extent and conservation interest of lowland grasslands in England and Wales: a review of grassland surveys 1930–84. Biol Conserv 40:281–300Google Scholar
  31. Gauch HG, Chase GB (1974) Fitting the Gaussian curve to ecological data. Ecology 55:1377–1381Google Scholar
  32. Glozier NE, Culp JM, Scrimgeour GJ (1997) Transferability of habitat suitability curves for a benthic minnow, Rhinichthys cataractae. J Freshwat Ecol 12:379–394Google Scholar
  33. Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: Capercaillie in the Swiss Alps. Landscape Ecol 20:703–717Google Scholar
  34. Grand J, Mello MJ (2004) A multi-scale analysis of species-environment relationships: rare moths in a pitch pine-scrub oak (Pinus rigida-Quercus ilicifolia) community. Biol Conserv 119:495–506Google Scholar
  35. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186Google Scholar
  36. Hanley JA, McNeil BL (1982) The meaning and use of the area under a ROC curve. Radiology 143:29–36PubMedGoogle Scholar
  37. Harrell FEJ (2001) Regression modelling strategies: with applications to linear models, logistic regression, and survival analysis. Springer-Verlag, BerlinGoogle Scholar
  38. Hartley JC, Warne AC (1972) The developmental biology of the egg stage of Western European Tettigoniidae (Orthoptera). J Zool 168:267–298CrossRefGoogle Scholar
  39. Harz K (1969) The Orthoptera of Europa, The HagueGoogle Scholar
  40. Heglund PJ, Jones JR, Fredrickson LH, Kaise MS (1994) Use of boreal forested wetlands by Pacific loons (Gavia pacifica Lawrence) and horned grebes (Podiceps auritus L.): Relations with limnological characteristics. Hydrobiologia 279/280:171–183Google Scholar
  41. Hein S, Gombert J, Hovestadt T, Poethke HJ (2003) Movement patterns of Platycleis albopunctata in different types of habitat: matrix is not always matrix. Ecol Entomol 28:432–438Google Scholar
  42. Hein S, Binzenhöfer B, Poethke HJ, Biedermann R, Settele J, Schröder B (in press) The generality of habitat suitability models: A practical test with two insect groups. Basic and Applied EcologyGoogle Scholar
  43. Heinrich W, Marstaller R, Bährmann R, Perner J, Schäller G (1998) Naturschutzreport – Jena: Das Naturschutzgebiet "Leutratal" bei Jena - Struktur- und Sukzessionsforschung in Grasland-Ökosystemen. JenaGoogle Scholar
  44. Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling. Ecol Modell 157:331–341Google Scholar
  45. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New YorkGoogle Scholar
  46. Huston MA (1994) Biological diversity the coexistence of species on changing landscapes. Cambridge University press, CambridgeGoogle Scholar
  47. Ingrisch S (1976) Vergleichende Untersuchung zum Nahrungsspektrum mitteleuropäischer Laubheuschrecken (Saltatoria: Tettigoniidae). Entomologische Zeitschrift 20:217–224Google Scholar
  48. Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Westarp-Wiss, MagdeburgGoogle Scholar
  49. Jacquemyn H, Brys R, Hermy M (2003) Short-term effects of different management regimes on the response of calcareous grassland vegetation to increased nitrogen. Biol Conserv 111:137–147Google Scholar
  50. Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71Google Scholar
  51. Kahmen S, Poschlod P, Schreiber K-F (2002) Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol Conserv 104:319–328Google Scholar
  52. Karagatzides JD, Manson HR, Tsuji LJS (2003) Spatial distribution and performance of Scirpus americanus ramets across a temperate intertidal marsh resource gradient. Plant Ecol 169:215–226Google Scholar
  53. Kindvall O, Ahlen I (1992) Geometrical factors and metapopulation dynamics of the bush cricket, Metrioptera bicolor Philippi (Orthoptera: Tettigoniidae). Conserv Biol 6:520–529Google Scholar
  54. Kleyer M, Biedermann R, Henle K, Poethke HJ, Poschlod P, Settele J (2002) MOSAIK—Semi-open pasture and ley—a research project on keeping the cultural landscape open. In: Redecker B, Härdtle W, Finck P, Riecken U, Schröder E (eds) Pasture landscape and nature conservation. Springer, Heidelberg, pp 399–412Google Scholar
  55. Krätzel K (1999) Habitatpräferenzen der beiden wärmeliebenden Heuschreckenarten Metrioptera bicolor und Platycleis albopunctata. Diploma Thesis. Bayerische-Julius- Maximilians-Universität WürzburgGoogle Scholar
  56. Krätzel K, Butterweck MD, Hovestadt T (2002) Habitatwahl von Metrioptera bicolor auf unterschiedlichen Maßstabsebenen (Ensifera: Tettigoniidae). Articulata 17:21–37Google Scholar
  57. Kull K, Zobel M (1991) High species richness in an Estonian wooded meadow. J Veg Sci 2:277–714Google Scholar
  58. Leftwich KN, Angermeier PL, Dolloff CA (1997) Factors influencing behavior and transferability of habitat models for a benthic stream fish. Trans Am Fish Soc 126:725–734Google Scholar
  59. Legalle M, Santoul F, Figuerola J, Mastrorillo S, Céréghino R (2005) Factors influencing the spatial distribution patterns of the bullhead (Cottus gobio L, Teleostei Cottidae): a multi-scale study. Biodivers Conserv 14:1319–1334Google Scholar
  60. Legendre P (1993) Spatial autocorrelation: Trouble or new paradigm? Ecology 74:1659–1673Google Scholar
  61. Lehmann A, Leathwick JR, Overton JM (2002a) Assessing New Zealand fern diversity from spatial predictions of species assemblages. Biodivers Conserv 11:2217–2238Google Scholar
  62. Lehmann A, Overton JM, Leathwick JR (2002b) GRASP: generalized regression analysis and spatial prediction. Ecol Modell 157:189–207Google Scholar
  63. Lele SR, Allen KL (2006) On using expert opinion in ecological analyses: a frequentist approach. Environmetrics (in press)Google Scholar
  64. Lichstein JW, Simons TR, Shriner SA, Franzreb K (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445–463Google Scholar
  65. Lindenmayer DB, Cunningham PB, Tanton MT, Nix HA, Smith AP (1991) The conservation of arboreal marsupials in the montane ash forests of the central highlands of Victoria, South East Australia: III. The habitat requirements of leadbeater’s possum Gymnobelideus leadbeateri and models of the diversity and abundance of arboreal marsupials. Biol Conserv 56:295–315Google Scholar
  66. Lindenmayer DB (2000) Factors at multiple scales affecting distribution patterns and their implications for animal conservation—Leadbeater’s Possum as a case study. Biodivers Conserv 9:15–35Google Scholar
  67. Luck GW (2002) The habitat requirements of the rufous treecreeper (Climacteris rufa). 1. Preferential habitat use demonstrated at multiple spatial scales. Biol Conserv 105:383–394Google Scholar
  68. Maas S, Detzel P, Staudt A (2002) Gefährdungsanalyse der Heuschrecken Deutschlands. Verbreitungsatlas, Gefährdungseinstufung und Schutzkonzepte. BfN-Schriftenvertrieb, Landwirtschaftsverlag, MünsterGoogle Scholar
  69. Mackey BG, Lindenmayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28:1147–1166Google Scholar
  70. Manel S, Diass JM, Buckton ST, Ormerod SJ (1999a) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. J Appl Ecol 36:734–747Google Scholar
  71. Manel S, Dias JM, Ormerod SJ (1999b) Comparing discriminant analysis, neural networks and logistic regression for predicted species distributions: a case study with a Himalayan river bird. Ecol Modell 120:337–347Google Scholar
  72. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931Google Scholar
  73. McConnaughay KDM, Bazzaz FA (1987) The relationship between gap size and performance of several colonizing annuals. Ecology 68:411–416Google Scholar
  74. Mörtberg U, Karlström A (2005) Predicting forest grouse distribution taking account of spatial autocorrelation. J Nat Conserv 13:147–159Google Scholar
  75. Morrison ML, Marcot BG, Mannan RW (1998) Wildlife-habitat relationsships—concepts and applications. The University of Wisconsin Press, MadisonGoogle Scholar
  76. Mühlenberg M (1993) Freilandökologie. UTB, HeidelbergGoogle Scholar
  77. Mühlenberg M, Henle K, Settele J, Poschlod P, Seitz A, Kaule G (1996) Studying species survival in fragmented landscapes: The approach of the FIFB. In: Settele J, Margules C, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer Academic Publishers, DordrechtGoogle Scholar
  78. Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692Google Scholar
  79. National Biodiversity Network Habitat Dictionary. Scholar
  80. Oppel S, Schaefer HM, Schmidt V, Schröder B (2004) Habitat selection by the Pale-headed brush-finch, Atlapetes pallidiceps, in southern Ecuador: implications for conservation. Biol Conserv 118:33–40Google Scholar
  81. Orians GH, Wittenberger JF (1991) Spatial and temporial scales in habitat selection. Am Nat 137:29–49Google Scholar
  82. Oschmann M (1993) Art-Unterschiede in der Phänologie der Heuschrecken (Saltatoria). Articulata 8:35–43Google Scholar
  83. Owen JG (1989) Patterns of herpetofauna species richness: relation to temperature, precipitation and variance in elevation. J Biogeogr 16:141–150Google Scholar
  84. Parody MJ, Milne BT (2004) Implications of rescaling rules for multi-scaled habitat models. Landscape Ecol 19:691–701Google Scholar
  85. Pearce JL, Burgman MA, Franklin DC (1994) Habitat selection by helmeted honeyeater. Wildl Res 21:53–63Google Scholar
  86. Peppler-Lisbach C, Schröder B (2004) Predicting the species composition of mat-grass communities (Nardetalia) by logistic regression modelling. J Veg Sci 15:623–634Google Scholar
  87. Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthological Soc 16:391–409Google Scholar
  88. Poirazidis K, Goutner V, Skartsi T, Stamou G (2004) Modelling nesting habitat as a conservation tool for the Eurasian black vulture (Aegypius monachus) in Dadia Nature Reserve, northeastern Greece. Biol Conserv 118:235–248Google Scholar
  89. Poschlod P, Bakker J, Bonn S, Fischer S (1996) Dispersal of plants in fragmented landscapes. In: Settele J, Margules C, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer Academic Publishers, DordrechtGoogle Scholar
  90. Poschlod P, Schumacher W (1998) Rückgang von Pflanzen - und Pflanzengesellschaften des Grünlandes.- Gefährdungsursachen und Handlungsbedarf. Schriftenreihe für Vegetationskunde 29:83–99Google Scholar
  91. Pykälä J (2003) Effects of restoration with cattle grazing on plant species composition and richness of semi-natural grasslands. Biodivers Conserv 12:2211–2226Google Scholar
  92. Redecker B, Härdtle W, Finck P, Riecken U, Schröder E (2002) Pasture landscape and nature conservation. Springer, Heidelberg. pp 399–412Google Scholar
  93. Reineking B, Schröder B (2006) Constrain to perform: regularization of habitat models. Ecol Modell 193:675–690Google Scholar
  94. Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225Google Scholar
  95. Roloff GJ, Kernoban BJ (1999) Habitat suitability and evaluation - evaluating reliability of habitat suitability index models. Wildl Soc Bull 27:973–985Google Scholar
  96. Rudner M, Biedermann R, Schröder B, Kleyer M (in press) Integrated grid based ecological and economic (INGRID) landscape model — a tool to support landscape management decisions. Environ Modell SoftwareGoogle Scholar
  97. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200Google Scholar
  98. Samways MJ, Moore SD (1991) Influence of exotic conifer patches on grasshopper (Orthoptera) assemblages in grassland matrix at a recreational resort, Natal, South Africa. Biol Conserv 57:117–137Google Scholar
  99. Schreiber KF (1977) Zur Sukzession und Flächenfreihaltung auf Brachland in Baden-Württemberg. Verhandlungen der Gesellschaft für Ökologie, GöttingenGoogle Scholar
  100. Schröder B, Richter O (1999) Are habitat models transferable in space and time? Zeitschrift für Ökologie und Naturschutz 8:195–205Google Scholar
  101. Schröder B (2000) Zwischen Naturschutz und Theoretischer Ökologie: Modelle zur Habitateignung und räumlichen Populationsdynamik für Heuschrecken im Niedermoor. PhD. Thesis, Technische Universität BraunschweigGoogle Scholar
  102. Schröder B (2004) ROC & AUC-calculation—evaluating the predictive performance of habitat models. Available from: < schroeder/download.html > Google Scholar
  103. Schröder B, Rudner M, Biedermann R, Kleyer M (2004) Ökologische und sozio-ökonomische Bewertung von Managementsystemen für die offenhaltung von Landschaften—ein integriertes Landschaftsmodell. UFZ-Bericht 9/2004:121–132Google Scholar
  104. Sergio F, Pedrini P, Marchesi L (2003) Adaptive selection of foraging and nesting habitat by black kites (Milvus migrans) and its implications for conservation: a multi-scale approach. Biol Conserv 112:351–362Google Scholar
  105. Settele J (1998) Metapopulationsanalyse auf Rasterdatenbasis. BG Teubner Verlagsgesellschaft, StuttgartGoogle Scholar
  106. Store R, Jokimaki J (2003) A GIS-based multi-scale approach to habitat suitability modeling. Ecol Modell 169:1–15Google Scholar
  107. Strauss B, Biedermann R (2005) The use of habitat models in conservation of rare and endangered leafhopper species (Hemiptera, Auchenorrhyncha). J Insect Conserv 9:245–259Google Scholar
  108. Sundermeier A (1999) Zur Vegetationsdichte der Xerothermrasen nordwestlich von Halle/Saale. Dissertationes BotanicaeGoogle Scholar
  109. Thompson CM, McGarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landscape Ecol 17:569–586Google Scholar
  110. Trexler JC, Travis J (1993) Nontraditional regression analyses. Ecology 74:1629–1637Google Scholar
  111. Van Dijk G (1991) The status of semi-natural grasslands in Europe. In: Goriup PD, Batten LA, Peterborough NJA (eds), The conservation of lowland dry grassland birds in Europe. Joint Nature Conservation Committee :15–36Google Scholar
  112. Van Wingerden WKRE, Musters JCM, Maascamp FIM (1991) The influence of temperature on the duration of egg development in West European grasshoppers (Orthoptera: Acrididae). Oecologia 87:417–423Google Scholar
  113. Vaughan IP, Ormerod SJ (2003) Improving the quality of distribution models for conservation by addressing shortcomings in the field collection of training data. Conserv Biol 17:1601–1611Google Scholar
  114. Verbyla DL, Litvaitis JA (1989) Resampling Methods for Evaluating classification accuracy of wildlife habitat models. Environ Manage 13:783–787Google Scholar
  115. Vos CC, Zonnefeld JIS (1993) Patterns and processes in a landscape under stress: the study area. In: Vos CC, Opdam P (eds) Landscape Ecology of a Stressed Environment. Chapmann & Hall, LondonGoogle Scholar
  116. Wessels KJ, van Jaarsveld AS, Grimbeek JD, van der Linde MJ (1998) An evaluation of the gradsect biological survey method. Biodivers Conserv 7:1093–1121Google Scholar
  117. Wilson KA, Westphal MI, Possingham HP, Elith J (2005) Sensitivity of conservation planning to different approaches using predicted species distribution data. Biol Conserv 122:99–112Google Scholar
  118. Zimmermann N, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Silke Hein
    • 1
    • 2
  • Julia Voss
    • 1
  • Hans-Joachim Poethke
    • 1
  • Schröder Boris
    • 3
  1. 1.Ecological Field StationUniversity of WürzburgWürzburgGermany
  2. 2.Institute of Plant Sciences/Applied EntomologyETH ZurichZurich
  3. 3.Institute of GeoecologyUniversity of PotsdamPotsdamGermany

Personalised recommendations