Skip to main content

Advertisement

Log in

Habitat suitability models for the conservation of thermophilic grasshoppers and bush crickets—simple or complex?

  • Original Paper
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

One goal of conservation biology is the assessment of effects of land use change on species distribution. One approach for identifying the factors, which determine habitat suitability for a species are statistical habitat distribution models. These models are quantitative and can be used for predictions in management scenarios. However, they often have one major shortcoming, which is their complexity. This means that they need several, often costly-to-determine parameters for predictions of species occurrence. We first used habitat suitability models to investigate and determine habitat preferences of three different Orthoptera species. Second, we compared the predictive powers of simple habitat suitability models considering only the ‘habitat type’ as predictor with more complex models taking different habitat factors into account. We found that the habitat type is the most reliable and robust factor, which determines the occurrence of the species studied. Thus, analyses of habitat suitability can easily be carried out on the basis of existing vegetation maps for the conservation of the three species under study. Our results can serve as a basis for the estimation of spatio-temporal distribution and survival probabilities of the species studied and might also be valuable for other species living in dry grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler PB, Raff DA, Lauenroth WK (2001) The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128:465–479

    Google Scholar 

  • Aspinall RJ, Lees BG (1994) Sampling and analysis of spatial environmental data. In: Waugh TC, Healey RG (eds) Advances in GIS Research. Taylor and Francis, Southampton, pp 1086–1098

    Google Scholar 

  • Aubry S, Magnin F, Bonnet V, Preece RC (2005) Multi-scale altitudinal patterns in species richness of land snail communities in south-eastern France. J Biogeogr 32:985–998

    Google Scholar 

  • Augustin NH, Cummins RP, French DD (2001) Exploring spatial vegetation dynamics using logistic regression and a multinomial logit model. J Appl Ecol 38:991–1006

    Google Scholar 

  • Austin MP (1976) On non-linear species response models in ordination. Vegetatio 33:33–41

    Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Modell 157:101–118

    Google Scholar 

  • Bakker JP (1989) Nature management by grazing and cutting. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bayerisches Landesamt für Umweltschutz: Biotopkartierung. http://www.bayern.de/lfu/natur/biotopkartierung/index.html. Cited May 1997

  • Bayerisches Landesamt für Umweltschutz: Rote Liste gefährdeter Springschrecken (Saltatoria) Bayerns. http://www.bayern.de/lfu/natur/arten_und_biotopschutz/roteliste/rote_liste_tiere_pdf/ral tatoria.pdf. Cited 2003

  • Beaufoy G, Baldock D, Clark J (1994) The nature of farming: low intensity farming systems in nine European Countries. Institute for European Environment Polica, London

    Google Scholar 

  • Beck JR, Shultz EK (1986) The use of ROC curves in test performance evaluation. Arch Pathol Laboratory Medicine 110:13–20

    PubMed  CAS  Google Scholar 

  • Bignal EM, McCracken DI (1996) Low-intensity farming systems in the conservation of the countyside. J Appl Ecol 33:413–424

    Google Scholar 

  • Binzenhöfer B, Schröder B, Biedermann R, Strauß B, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths–the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259

    Google Scholar 

  • Bio AMF, De Becker P, De Bie E, Huybrechts W, Wassen M (2002) Prediction of plant species distribution in lowland river valleys in Belgium: modelling species response to site conditions. Biodivers Conserv 11:2189–2216

    Google Scholar 

  • Bobbink R, Willems JH (1993) Restoration management of abandoned chalk grassland in the Netherlands. Biodivers Conserv 2:616–626

    Google Scholar 

  • Buckland ST, Burnham KP, Augustin NH (1997) Model selection: An integral part of inference. Biometrics 53:603–618

    Google Scholar 

  • Cabeza M, Araújo MB, Wilson RJ, Thomas CD, Cowley MJR, Moilanen A (2004) Combining probabilities of occurrence with spatial reserve design. J Appl Ecol 41:252–262

    Google Scholar 

  • Chambers BQ, Samways MJ (1998) Grasshopper response to a 40-year experimental burning and mowing regime, with recommendations for invertebrate conservation management. Biodivers Conserv 7:985–1012

    Google Scholar 

  • Cushman SA, McGarigal K (2002) Hierarchical, multi-scale decomposition of species environment relationships. Landscape Ecol 17:637–646

    Google Scholar 

  • Dennis RLH, Eales HT (1999) Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical and ecological data. Biol Conserv 7:295–302

    Google Scholar 

  • Detzel P (1998) Die Heuschrecken Baden-Württembergs. Stuttgart, Ulmer

    Google Scholar 

  • Dufrene M, Legendre P (1991) Geographic structure and potential ecological factors in Belgium. J Biogeogr 18:257–266

    Google Scholar 

  • Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapmann and Hall, New York

    Google Scholar 

  • Elsner O (1994) Geplantes Naturschutzgebiet "Südlicher Hassbergtrauf" im Landkreis Hassberge. Institut für Vegetationskunde und Landschaftsökologie, Zeckern

    Google Scholar 

  • Fielding AH, Haworth PF (1995) Testing the generality of bird-habitat models. Conserv Biol 9:1466–1481

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Fleishman E, Mac Nally R, Fay JP (2003) Validation tests of predictive models of butterfly occurrence based on environmental variables. Conserv Biol 17:806–817

    Google Scholar 

  • Fraser RH (1998) Vertebrate species richness at the mesoscale: relative role of energy and heterogeneity. Glob Ecol Biogeogr 7:215–220

    Google Scholar 

  • Freeman MC, Bowen ZH, Crance JH (1997) Transferability of habitat suitability criteria for fishes in warmwater streams. N Am J Fish Manage 17:20–31

    Google Scholar 

  • Fuller RM (1987) The changing extent and conservation interest of lowland grasslands in England and Wales: a review of grassland surveys 1930–84. Biol Conserv 40:281–300

    Google Scholar 

  • Gauch HG, Chase GB (1974) Fitting the Gaussian curve to ecological data. Ecology 55:1377–1381

    Google Scholar 

  • Glozier NE, Culp JM, Scrimgeour GJ (1997) Transferability of habitat suitability curves for a benthic minnow, Rhinichthys cataractae. J Freshwat Ecol 12:379–394

    Google Scholar 

  • Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: Capercaillie in the Swiss Alps. Landscape Ecol 20:703–717

    Google Scholar 

  • Grand J, Mello MJ (2004) A multi-scale analysis of species-environment relationships: rare moths in a pitch pine-scrub oak (Pinus rigida-Quercus ilicifolia) community. Biol Conserv 119:495–506

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186

    Google Scholar 

  • Hanley JA, McNeil BL (1982) The meaning and use of the area under a ROC curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  • Harrell FEJ (2001) Regression modelling strategies: with applications to linear models, logistic regression, and survival analysis. Springer-Verlag, Berlin

    Google Scholar 

  • Hartley JC, Warne AC (1972) The developmental biology of the egg stage of Western European Tettigoniidae (Orthoptera). J Zool 168:267–298

    Article  Google Scholar 

  • Harz K (1969) The Orthoptera of Europa, The Hague

  • Heglund PJ, Jones JR, Fredrickson LH, Kaise MS (1994) Use of boreal forested wetlands by Pacific loons (Gavia pacifica Lawrence) and horned grebes (Podiceps auritus L.): Relations with limnological characteristics. Hydrobiologia 279/280:171–183

    Google Scholar 

  • Hein S, Gombert J, Hovestadt T, Poethke HJ (2003) Movement patterns of Platycleis albopunctata in different types of habitat: matrix is not always matrix. Ecol Entomol 28:432–438

    Google Scholar 

  • Hein S, Binzenhöfer B, Poethke HJ, Biedermann R, Settele J, Schröder B (in press) The generality of habitat suitability models: A practical test with two insect groups. Basic and Applied Ecology

  • Heinrich W, Marstaller R, Bährmann R, Perner J, Schäller G (1998) Naturschutzreport – Jena: Das Naturschutzgebiet "Leutratal" bei Jena - Struktur- und Sukzessionsforschung in Grasland-Ökosystemen. Jena

  • Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling. Ecol Modell 157:331–341

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Google Scholar 

  • Huston MA (1994) Biological diversity the coexistence of species on changing landscapes. Cambridge University press, Cambridge

    Google Scholar 

  • Ingrisch S (1976) Vergleichende Untersuchung zum Nahrungsspektrum mitteleuropäischer Laubheuschrecken (Saltatoria: Tettigoniidae). Entomologische Zeitschrift 20:217–224

    Google Scholar 

  • Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Westarp-Wiss, Magdeburg

    Google Scholar 

  • Jacquemyn H, Brys R, Hermy M (2003) Short-term effects of different management regimes on the response of calcareous grassland vegetation to increased nitrogen. Biol Conserv 111:137–147

    Google Scholar 

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71

    Google Scholar 

  • Kahmen S, Poschlod P, Schreiber K-F (2002) Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol Conserv 104:319–328

    Google Scholar 

  • Karagatzides JD, Manson HR, Tsuji LJS (2003) Spatial distribution and performance of Scirpus americanus ramets across a temperate intertidal marsh resource gradient. Plant Ecol 169:215–226

    Google Scholar 

  • Kindvall O, Ahlen I (1992) Geometrical factors and metapopulation dynamics of the bush cricket, Metrioptera bicolor Philippi (Orthoptera: Tettigoniidae). Conserv Biol 6:520–529

    Google Scholar 

  • Kleyer M, Biedermann R, Henle K, Poethke HJ, Poschlod P, Settele J (2002) MOSAIK—Semi-open pasture and ley—a research project on keeping the cultural landscape open. In: Redecker B, Härdtle W, Finck P, Riecken U, Schröder E (eds) Pasture landscape and nature conservation. Springer, Heidelberg, pp 399–412

    Google Scholar 

  • Krätzel K (1999) Habitatpräferenzen der beiden wärmeliebenden Heuschreckenarten Metrioptera bicolor und Platycleis albopunctata. Diploma Thesis. Bayerische-Julius- Maximilians-Universität Würzburg

  • Krätzel K, Butterweck MD, Hovestadt T (2002) Habitatwahl von Metrioptera bicolor auf unterschiedlichen Maßstabsebenen (Ensifera: Tettigoniidae). Articulata 17:21–37

    Google Scholar 

  • Kull K, Zobel M (1991) High species richness in an Estonian wooded meadow. J Veg Sci 2:277–714

    Google Scholar 

  • Leftwich KN, Angermeier PL, Dolloff CA (1997) Factors influencing behavior and transferability of habitat models for a benthic stream fish. Trans Am Fish Soc 126:725–734

    Google Scholar 

  • Legalle M, Santoul F, Figuerola J, Mastrorillo S, Céréghino R (2005) Factors influencing the spatial distribution patterns of the bullhead (Cottus gobio L, Teleostei Cottidae): a multi-scale study. Biodivers Conserv 14:1319–1334

    Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: Trouble or new paradigm? Ecology 74:1659–1673

    Google Scholar 

  • Lehmann A, Leathwick JR, Overton JM (2002a) Assessing New Zealand fern diversity from spatial predictions of species assemblages. Biodivers Conserv 11:2217–2238

    Google Scholar 

  • Lehmann A, Overton JM, Leathwick JR (2002b) GRASP: generalized regression analysis and spatial prediction. Ecol Modell 157:189–207

    Google Scholar 

  • Lele SR, Allen KL (2006) On using expert opinion in ecological analyses: a frequentist approach. Environmetrics (in press)

  • Lichstein JW, Simons TR, Shriner SA, Franzreb K (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445–463

    Google Scholar 

  • Lindenmayer DB, Cunningham PB, Tanton MT, Nix HA, Smith AP (1991) The conservation of arboreal marsupials in the montane ash forests of the central highlands of Victoria, South East Australia: III. The habitat requirements of leadbeater’s possum Gymnobelideus leadbeateri and models of the diversity and abundance of arboreal marsupials. Biol Conserv 56:295–315

    Google Scholar 

  • Lindenmayer DB (2000) Factors at multiple scales affecting distribution patterns and their implications for animal conservation—Leadbeater’s Possum as a case study. Biodivers Conserv 9:15–35

    Google Scholar 

  • Luck GW (2002) The habitat requirements of the rufous treecreeper (Climacteris rufa). 1. Preferential habitat use demonstrated at multiple spatial scales. Biol Conserv 105:383–394

    Google Scholar 

  • Maas S, Detzel P, Staudt A (2002) Gefährdungsanalyse der Heuschrecken Deutschlands. Verbreitungsatlas, Gefährdungseinstufung und Schutzkonzepte. BfN-Schriftenvertrieb, Landwirtschaftsverlag, Münster

  • Mackey BG, Lindenmayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28:1147–1166

    Google Scholar 

  • Manel S, Diass JM, Buckton ST, Ormerod SJ (1999a) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. J Appl Ecol 36:734–747

    Google Scholar 

  • Manel S, Dias JM, Ormerod SJ (1999b) Comparing discriminant analysis, neural networks and logistic regression for predicted species distributions: a case study with a Himalayan river bird. Ecol Modell 120:337–347

    Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Google Scholar 

  • McConnaughay KDM, Bazzaz FA (1987) The relationship between gap size and performance of several colonizing annuals. Ecology 68:411–416

    Google Scholar 

  • Mörtberg U, Karlström A (2005) Predicting forest grouse distribution taking account of spatial autocorrelation. J Nat Conserv 13:147–159

    Google Scholar 

  • Morrison ML, Marcot BG, Mannan RW (1998) Wildlife-habitat relationsships—concepts and applications. The University of Wisconsin Press, Madison

    Google Scholar 

  • Mühlenberg M (1993) Freilandökologie. UTB, Heidelberg

    Google Scholar 

  • Mühlenberg M, Henle K, Settele J, Poschlod P, Seitz A, Kaule G (1996) Studying species survival in fragmented landscapes: The approach of the FIFB. In: Settele J, Margules C, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Google Scholar 

  • National Biodiversity Network Habitat Dictionary. www.nbn.org.uk/habitats

  • Oppel S, Schaefer HM, Schmidt V, Schröder B (2004) Habitat selection by the Pale-headed brush-finch, Atlapetes pallidiceps, in southern Ecuador: implications for conservation. Biol Conserv 118:33–40

    Google Scholar 

  • Orians GH, Wittenberger JF (1991) Spatial and temporial scales in habitat selection. Am Nat 137:29–49

    Google Scholar 

  • Oschmann M (1993) Art-Unterschiede in der Phänologie der Heuschrecken (Saltatoria). Articulata 8:35–43

    Google Scholar 

  • Owen JG (1989) Patterns of herpetofauna species richness: relation to temperature, precipitation and variance in elevation. J Biogeogr 16:141–150

    Google Scholar 

  • Parody MJ, Milne BT (2004) Implications of rescaling rules for multi-scaled habitat models. Landscape Ecol 19:691–701

    Google Scholar 

  • Pearce JL, Burgman MA, Franklin DC (1994) Habitat selection by helmeted honeyeater. Wildl Res 21:53–63

    Google Scholar 

  • Peppler-Lisbach C, Schröder B (2004) Predicting the species composition of mat-grass communities (Nardetalia) by logistic regression modelling. J Veg Sci 15:623–634

    Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthological Soc 16:391–409

    Google Scholar 

  • Poirazidis K, Goutner V, Skartsi T, Stamou G (2004) Modelling nesting habitat as a conservation tool for the Eurasian black vulture (Aegypius monachus) in Dadia Nature Reserve, northeastern Greece. Biol Conserv 118:235–248

    Google Scholar 

  • Poschlod P, Bakker J, Bonn S, Fischer S (1996) Dispersal of plants in fragmented landscapes. In: Settele J, Margules C, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Poschlod P, Schumacher W (1998) Rückgang von Pflanzen - und Pflanzengesellschaften des Grünlandes.- Gefährdungsursachen und Handlungsbedarf. Schriftenreihe für Vegetationskunde 29:83–99

    Google Scholar 

  • Pykälä J (2003) Effects of restoration with cattle grazing on plant species composition and richness of semi-natural grasslands. Biodivers Conserv 12:2211–2226

    Google Scholar 

  • Redecker B, Härdtle W, Finck P, Riecken U, Schröder E (2002) Pasture landscape and nature conservation. Springer, Heidelberg. pp 399–412

  • Reineking B, Schröder B (2006) Constrain to perform: regularization of habitat models. Ecol Modell 193:675–690

    Google Scholar 

  • Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Google Scholar 

  • Roloff GJ, Kernoban BJ (1999) Habitat suitability and evaluation - evaluating reliability of habitat suitability index models. Wildl Soc Bull 27:973–985

    Google Scholar 

  • Rudner M, Biedermann R, Schröder B, Kleyer M (in press) Integrated grid based ecological and economic (INGRID) landscape model — a tool to support landscape management decisions. Environ Modell Software

  • Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200

    Google Scholar 

  • Samways MJ, Moore SD (1991) Influence of exotic conifer patches on grasshopper (Orthoptera) assemblages in grassland matrix at a recreational resort, Natal, South Africa. Biol Conserv 57:117–137

    Google Scholar 

  • Schreiber KF (1977) Zur Sukzession und Flächenfreihaltung auf Brachland in Baden-Württemberg. Verhandlungen der Gesellschaft für Ökologie, Göttingen

    Google Scholar 

  • Schröder B, Richter O (1999) Are habitat models transferable in space and time? Zeitschrift für Ökologie und Naturschutz 8:195–205

    Google Scholar 

  • Schröder B (2000) Zwischen Naturschutz und Theoretischer Ökologie: Modelle zur Habitateignung und räumlichen Populationsdynamik für Heuschrecken im Niedermoor. PhD. Thesis, Technische Universität Braunschweig

  • Schröder B (2004) ROC & AUC-calculation—evaluating the predictive performance of habitat models. Available from: < http://brandenburg.geoecology.uni-potsdam.de/users/ schroeder/download.html > 

  • Schröder B, Rudner M, Biedermann R, Kleyer M (2004) Ökologische und sozio-ökonomische Bewertung von Managementsystemen für die offenhaltung von Landschaften—ein integriertes Landschaftsmodell. UFZ-Bericht 9/2004:121–132

    Google Scholar 

  • Sergio F, Pedrini P, Marchesi L (2003) Adaptive selection of foraging and nesting habitat by black kites (Milvus migrans) and its implications for conservation: a multi-scale approach. Biol Conserv 112:351–362

    Google Scholar 

  • Settele J (1998) Metapopulationsanalyse auf Rasterdatenbasis. BG Teubner Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Store R, Jokimaki J (2003) A GIS-based multi-scale approach to habitat suitability modeling. Ecol Modell 169:1–15

    Google Scholar 

  • Strauss B, Biedermann R (2005) The use of habitat models in conservation of rare and endangered leafhopper species (Hemiptera, Auchenorrhyncha). J Insect Conserv 9:245–259

    Google Scholar 

  • Sundermeier A (1999) Zur Vegetationsdichte der Xerothermrasen nordwestlich von Halle/Saale. Dissertationes Botanicae

  • Thompson CM, McGarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landscape Ecol 17:569–586

    Google Scholar 

  • Trexler JC, Travis J (1993) Nontraditional regression analyses. Ecology 74:1629–1637

    Google Scholar 

  • Van Dijk G (1991) The status of semi-natural grasslands in Europe. In: Goriup PD, Batten LA, Peterborough NJA (eds), The conservation of lowland dry grassland birds in Europe. Joint Nature Conservation Committee :15–36

  • Van Wingerden WKRE, Musters JCM, Maascamp FIM (1991) The influence of temperature on the duration of egg development in West European grasshoppers (Orthoptera: Acrididae). Oecologia 87:417–423

    Google Scholar 

  • Vaughan IP, Ormerod SJ (2003) Improving the quality of distribution models for conservation by addressing shortcomings in the field collection of training data. Conserv Biol 17:1601–1611

    Google Scholar 

  • Verbyla DL, Litvaitis JA (1989) Resampling Methods for Evaluating classification accuracy of wildlife habitat models. Environ Manage 13:783–787

    Google Scholar 

  • Vos CC, Zonnefeld JIS (1993) Patterns and processes in a landscape under stress: the study area. In: Vos CC, Opdam P (eds) Landscape Ecology of a Stressed Environment. Chapmann & Hall, London

    Google Scholar 

  • Wessels KJ, van Jaarsveld AS, Grimbeek JD, van der Linde MJ (1998) An evaluation of the gradsect biological survey method. Biodivers Conserv 7:1093–1121

    Google Scholar 

  • Wilson KA, Westphal MI, Possingham HP, Elith J (2005) Sensitivity of conservation planning to different approaches using predicted species distribution data. Biol Conserv 122:99–112

    Google Scholar 

  • Zimmermann N, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482

    Google Scholar 

Download references

Acknowledgements

We are grateful to Birgit Binzenhöfer for her cooperation in the field and Barbara Strauss for her help with the GIS-analysis of the plot surroundings. We thank Edward Connor for his help to improve the English and Michael Rudner for botanical advice. Thomas Hovestadt and two anonymous reviewers provided helpful comments on an earlier version of the manuscript. This study is part of the MOSAIK-project and is financially supported by the German Federal Ministry of Education and Research (BMBF, grant 01LN 0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Hein.

Appendix

Appendix

Table 4 Plant indicator species of the 10 main habitat types in the study area

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hein, S., Voss, J., Poethke, HJ. et al. Habitat suitability models for the conservation of thermophilic grasshoppers and bush crickets—simple or complex?. J Insect Conserv 11, 221–240 (2007). https://doi.org/10.1007/s10841-006-9038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-006-9038-5

Keywords

Navigation