Advertisement

Journal of Insect Conservation

, Volume 10, Issue 4, pp 311–316 | Cite as

The Chalk-hill Blue Polyommatus coridon (Lycaenidae, Lepidoptera) in a highly fragmented landscape: How sedentary is a sedentary butterfly?

  • Thomas Schmitt
  • Jan C. Habel
  • Joachim Besold
  • Tatjana Becker
  • Linda Johnen
  • Martin Knolle
  • Andreas Rzepecki
  • Johannes Schultze
  • Andreas Zapp
Original Paper

Abstract

The habitats of many species are fragmented. Therefore, the survival in a metapopulation depends on the stability of the single populations and the amount of movements between patches. We chose the calcareous grassland specialist butterfly species Polyommatus coridon as a model. As study area, we selected a mosaic-like landscape in Rhineland-Palatinate (western Germany) with several well preserved calcareous grassland fragments. We marked a total of 2,211 individuals during July and August 2003. The overall recapture ratio was 7.1%. The estimated mean butterfly densities over the whole flight season ranged from 52 to 487 individuals per hectare. The within-patch movements were relatively low (13.3%) compared with the between-patch movements (3.2%). Therefore, the metapopulation structure appears to be intact in our study area.

Keywords

Butterflies Mark release recapture Semi-natural calcareous grasslands Within - and between-patch movements Metapopulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the government of Rhineland Palatinate (section North) in Koblenz for the permission to mark the butterflies and to work in nature reserves, Steven Burke (Stanford, CA, USA) for helpful discussions on a draft version of this article and the correction of our English as well as two anonymous referees for their constructive remarks.

References

  1. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  2. Baguette M, Nève G (1994) Adult movements between populations in the specialist butterfly Proclossiana eunomia. Ecol Entomol 19:1–5Google Scholar
  3. Baguette M, Petit S, Quéva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108CrossRefGoogle Scholar
  4. Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160CrossRefGoogle Scholar
  5. Billington HL (1991) Effects of population size on genetic variation in a dioecious conifer Halocarpus bidwillii. Conserv Biol 5:115–119CrossRefGoogle Scholar
  6. Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Haarlem, Schuyt & Co. Uitgevers en ImporteursGoogle Scholar
  7. Bryant EH, Backus VL, Clark ME, Reed DH (1999) Experimental tests of captive breeding for endangered species. Conserv Biol 13:1487–1496, Musca, Fliegen, Flaschenhals, bottleneckCrossRefGoogle Scholar
  8. Buza L, Young A, Thrall P (2000) Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biol Conserv 93:177–186CrossRefGoogle Scholar
  9. Cowley MJR, Thomas CD, Roy DB, Wilson RJ, Léon-Cortés JL, Guitiérrez D, Bulman CR, Quinn RM, Moss D, Gaston KJ (2001) Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J Anim Ecol 70:410–425CrossRefGoogle Scholar
  10. Ebert G, Rennwald E (Hrsg.) (1991) Die Schmetterlinge Baden-Württembergs, Volume 1 and 2. Stuttgart: Verlag Eugen Ulmer.Google Scholar
  11. Ellenberg H (1992) Zeigerwerte der Gefäßpflanzen Mitteleuropas (3rd ed.). Scripta Geobotanica. Göttingen, Verlag Erich GöltzeGoogle Scholar
  12. van Es J, Paillisson J-M, Burel F (1998) Impacts de l’eutrophisation de la végétation des zone humide de fonds de vallées sur la biodiversité des rhopalocères (Lepidoptera). Vie et Milieu 49:107–116Google Scholar
  13. Fischer M, Matthies D (1998) RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Am J Bot 85:811–819CrossRefGoogle Scholar
  14. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  15. Hanski I (1994) Patch-occupancy dynamics in fragmented landscapes. Trends Ecol Evol 9:131–135CrossRefGoogle Scholar
  16. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  17. Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474PubMedCrossRefGoogle Scholar
  18. Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735CrossRefGoogle Scholar
  19. Hudson QJ, Wilkins RJ, Waas JR, Hogg ID (2000) Low genetic variability in small populations of New Zealand kokako Callaeas cinerea wilsoni. Biol Conserv 96:105–112CrossRefGoogle Scholar
  20. Jäggi C, Wirth T, Baur B (2000) Genetic variability in subpopulations of the asp viper (Vipera aspis) in the Swiss Jura mountains: implications for a conservation strategy. Biol Conserv 94:69–77CrossRefGoogle Scholar
  21. Jolly GM (1965) Explicit estimates from capture-recapture data with both death and immigration—stochastic model. Biometrika 52:225–247PubMedCrossRefGoogle Scholar
  22. Jungbluth JH with cooperation of Fuchs H, Groh K, Högner G, Jacob B, Scholtes M (1995) Die Naturschutzgebiete in Rheinland-Pfalz. V. Die Planungsregion Trier. Mainzer naturwissenschaftliches Archiv Beiheft 17.Google Scholar
  23. Lewis OT, Thomas CD, Hill JK, Brookes MI, Crane TPR, Graneau YA, Mallet JLB, Rose OC (1997) Three ways of assessing metapopulation structure in the butterfly Plebejus argus. Ecol Entomol 22:283–293CrossRefGoogle Scholar
  24. Luijten SH, Dierick A, Gerard J, Oostermeijer B, Raijmann LEL, Den Nijs HCM (2000) Population size, genetic variation, and reproductive success in a rapidly declining, self-compatible perennial (Arnica montana) in The Netherlands. Conserv Biol 14:1776–1787CrossRefGoogle Scholar
  25. Madsen T, Olsson M, Wittzell H, Stille B, Gullberg A, Shine R, Andersson S, Tegelström H (2000) Population size and genetic diversity in sand lizards (Lacerta agilis) and adders (Vipera berus). Biol Conserv 94:257–262CrossRefGoogle Scholar
  26. Madsen T, Shine R,Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35CrossRefGoogle Scholar
  27. Meagher S (1999) Genetic diversity and Capillaria hepatica (Nematoda) prevalence in Michigan deer mouse populations. Evolution 53:1318–1324CrossRefGoogle Scholar
  28. Mousson L, Nève G, Baguette M (1999) Metapopulation structure and conservation of the dramberry fritillary Boloria aquilonaris (Lepidoptera, Nymphalidae) in Belgium. Biol Conserv 87:285–293CrossRefGoogle Scholar
  29. Néve G, Barascud B, Hughes R, Aubert J, Descimon H, Lebrun P, Baguette M (1996) Dispersal, colonization power and metapopulation structure in the vulnerable butterfly Proclossiana eunomia (Lepidoptera: Nymphalidae). J Appl Ecol 33:14–22CrossRefGoogle Scholar
  30. Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51:354–362CrossRefGoogle Scholar
  31. Oostermeijer JGB, van Swaay CAM (1998) The relationship between butterflies and environmental indicator values: a tool for conservation in a changing landscape. Biol Conserv 86:271–280CrossRefGoogle Scholar
  32. Oostermeijer JGB, van Eijck MW, van Leeuwen NC, den Nijs JCM (1995) Analysis of the relationship between allozyme heterozygosity and fitness in the rare Gentiana pneumonanthe L. J Evol Biol 8:739–759CrossRefGoogle Scholar
  33. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  34. Roland J, Keyghobadi N, Fownes S (2000) Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81:1642–1653CrossRefGoogle Scholar
  35. Rowe G, Beebee TJC, Burke T (1999) Microsatellite heterozygosity, fitness, and demography in natterjack toads Bufo calamita. Anim Conserv 2:85–92CrossRefGoogle Scholar
  36. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  37. Schmitt T, Seitz A (2002) Influence of habitat fragmentation on the genetic structure of Polyommatus coridon (Lepidoptera: Lycaenidae): implications for conservation. Biol Conserv 107:291–297CrossRefGoogle Scholar
  38. Swaay CAM, van (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318CrossRefGoogle Scholar
  39. Wahlberg N, Klemetti T, Hanski I (2002) Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography 25:224–232CrossRefGoogle Scholar
  40. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  41. Weidemann H-J (1988) Tagfalter, vol 2. Verlag J. Neumann-Neudamm, MelsungenGoogle Scholar
  42. Westemeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Eric L, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Thomas Schmitt
    • 1
  • Jan C. Habel
    • 1
  • Joachim Besold
    • 1
  • Tatjana Becker
    • 1
  • Linda Johnen
    • 1
  • Martin Knolle
    • 1
  • Andreas Rzepecki
    • 1
  • Johannes Schultze
    • 1
  • Andreas Zapp
    • 1
  1. 1.BiogeographyUniversity of TrierTrierGermany

Personalised recommendations