Skip to main content

Advertisement

Log in

Transcutaneous vagus nerve stimulation attenuates autoantibody-mediated cardiovagal dysfunction and inflammation in a rabbit model of postural tachycardia syndrome

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Previous studies demonstrated M2 muscarinic acetylcholine receptor-activating autoantibodies (M2R-AAb) were present in some patients with postural tachycardia syndrome (POTS). This study examines how these autoantibodies might contribute to the pathophysiology of POTS, and whether low-level tragus stimulation (LLTS) can ameliorate autoantibody-mediated autonomic dysregulation in the rabbit.

Methods

Five New Zealand white rabbits were immunized with a M2R second extracellular loop peptide to produce cholinomimetic M2R-AAb. Tilt test and infusion studies were performed on conscious rabbits before immunization, 6 weeks after immunization, and 8 weeks after immunization with 2-week daily LLTS treatment. Each rabbit served as its own control.

Results

Compared to preimmune state, an enhanced heart rate increase and decreased parasympathetic activity upon tilting were observed in immunized rabbits. Furthermore, these rabbits demonstrated an attenuated heart rate-slowing response to infusion of the M2R orthosteric agonist arecaidine propargyl ester (APE), suggesting an inhibitory allosteric effect of M2R-AAb. There was also a significant increase in serum inflammatory cytokines in immunized rabbits. LLTS treatment suppressed the postural tachycardia, improved the sympathovagal balance with increased acetylcholine secretion, reduced the levels of inflammatory cytokines, and reversed the attenuated heart rate response to APE in immunized rabbits. No suppression of M2R-AAb expression by LLTS was found during this short-term study period. Receptor-modulating activity of M2R-AAb produced in immunized rabbits was confirmed with in vitro bioassay.

Conclusions

Autoantibody inhibition of cholinergic ligand activity may be involved in the development of cardiovagal dysfunction and inflammation associated with POTS, both of which can be improved by vagal stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fedorowski A. Postural orthostatic tachycardia syndrome: clinical presentation, aetiology and management. J Intern Med. 2019;285:352–66.

    Article  CAS  PubMed  Google Scholar 

  2. Low PA, Sandroni P, Joyner M, Shen WK. Postural tachycardia syndrome (POTS). J Cardiovasc Electrophysiol. 2009;20:352–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Raj SR. Postural tachycardia syndrome (POTS). Circulation. 2013;127:2336–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mar PL, Raj SR. Neuronal and hormonal perturbations in postural tachycardia syndrome. Front Physiol. 2014;5:220.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vernino S, Stiles LE. Autoimmunity in postural orthostatic tachycardia syndrome: current understanding. Auton Neurosci. 2018;215:78–82.

    Article  PubMed  Google Scholar 

  6. Ruzieh M, Batizy L, Dasa O, Oostra C, Grubb B. The role of autoantibodies in the syndromes of orthostatic intolerance: a systematic review. Scand Cardiovasc J. 2017;51:243–7.

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Yu X, Liles C, Khan M, Vanderlinde-Wood M, Galloway A, et al. Autoimmune basis for postural tachycardia syndrome. J Am Heart Assoc. 2014;3:e000755.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fedorowski A, Li H, Yu X, Koelsch KA, Harris VM, Liles C, et al. Antiadrenergic autoimmunity in postural tachycardia syndrome. Europace. 2017;19:1211–9.

    Article  PubMed  Google Scholar 

  9. Yu X, Li H, Murphy TA, Nuss Z, Liles J, Liles C, et al. Angiotensin II type 1 receptor autoantibodies in postural tachycardia syndrome. J Am Heart Assoc. 2018;7:e008351.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li H, Zhang G, Zhou L, Nuss Z, Beel M, Hines B, et al. Adrenergic autoantibody-induced postural tachycardia syndrome in rabbits. J Am Heart Assoc. 2019;8:e013006.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li H, Kem DC, Zhang L, Huang B, Liles C, Benbrook A, et al. Novel retro-inverso peptide inhibitor reverses angiotensin receptor autoantibody-induced hypertension in the rabbit. Hypertension. 2015;65:793–9.

    Article  CAS  PubMed  Google Scholar 

  12. Furlan R, Jacob G, Snell M, Robertson D, Porta A, Harris P, et al. Chronic orthostatic intolerance: a disorder with discordant cardiac and vascular sympathetic control. Circulation. 1998;98:2154–9.

    Article  CAS  PubMed  Google Scholar 

  13. Li H, Zhang G, Forsythe E, Okamoto LE, Yu X. Implications of antimuscarinic autoantibodies in postural tachycardia syndrome. J Cardiovasc Transl Res. Published online August 18, 2021 https://doi.org/10.1007/s12265-021-10167-z.

  14. Fu ML, Schulze W, Wallukat G, Hjalmarson A, Hoebeke J. A synthetic peptide corresponding to the second extracellular loop of the human M2 acetylcholine receptor induces pharmacological and morphological changes in cardiomyocytes by active immunization after 6 months in rabbits. Clin Immunol Immunopathol. 1996;78:203–7.

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Murphy T, Zhang L, Huang B, Veitla V, Scherlag BJ, et al. Beta1-adrenergic and M2 muscarinic autoantibodies and thyroid hormone facilitate induction of atrial fibrillation in male rabbits. Endocrinology. 2016;157:16–22.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou L, Filiberti A, Humphrey MB, Fleming CD, Scherlag BJ, Po SS, et al. Low-level transcutaneous vagus nerve stimulation attenuates cardiac remodelling in a rat model of heart failure with preserved ejection fraction. Exp Physiol. 2019;104:28–38.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Yu L, Wang S, Huang B, Liao K, Saren G, et al. Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction. Circ Heart Fail. 2014;7:1014–21.

    Article  PubMed  Google Scholar 

  18. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043-1065

  19. Moguilevski VA, Shiel L, Oliver J, McGrath BP. Power spectral analysis of heart-rate variability reflects the level of cardiac autonomic activity in rabbits. J Auton Nerv Syst. 1996;58:18–24.

    Article  CAS  PubMed  Google Scholar 

  20. Nogami Y, Takase B, Matsui T, Hattori H, Hamabe A, Fujita M, et al. Effect of antiarrhythmic agents on heart rate variability indices after myocardial infarction: comparative experimental study of aprindine and procainamide. Biomed Pharmacother. 2005;59(Suppl 1):S169-173.

    Article  CAS  PubMed  Google Scholar 

  21. Kawamoto M, Kaneko K, Hardian Yuge O. Heart rate variability during artificial ventilation and apnea in brain-damaged rabbits. Am J Physiol. 1996;271:H410-416.

    CAS  PubMed  Google Scholar 

  22. Manzo A, Ootaki Y, Ootaki C, Kamohara K, Fukamachi K. Comparative study of heart rate variability between healthy human subjects and healthy dogs, rabbits and calves. Lab Anim. 2009;43:41–5.

    Article  CAS  PubMed  Google Scholar 

  23. Xhyheri B, Manfrini O, Mazzolini M, Pizzi C, Bugiardini R. Heart rate variability today. Prog Cardiovasc Dis. 2012;55:321–31.

    Article  PubMed  Google Scholar 

  24. Tumiatti V, Wehrle J, Hildebrandt C, Moser U, Dannhardt G, Mutschler E, et al. Muscarinic properties of compounds related to arecaidine propargyl ester. Arzneimittelforschung. 2000;50:11–5.

    CAS  PubMed  Google Scholar 

  25. Jaiswal N, Lambrecht G, Mutschler E, Malik KU. Effect of M2 muscarinic receptor antagonist 4-DAMP, on prostaglandin synthesis and mechanical function in the isolated rabbit heart. Gen Pharmacol. 1989;20:497–502.

    Article  CAS  PubMed  Google Scholar 

  26. Lee LM, Chang CK, Cheng KC, Kou DH, Liu IM, Cheng JT. Increase of cardiac M2-muscarinic receptor gene expression in type-1 but not in type-2 diabetic rats. Neurosci Lett. 2008;441:201–4.

    Article  CAS  PubMed  Google Scholar 

  27. Liu IM, Chang CK, Juang SW, Kou DH, Tong YC, Cheng KC, et al. Role of hyperglycaemia in the pathogenesis of hypotension observed in type-1 diabetic rats. Int J Exp Pathol. 2008;89:292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deng J, Guo Y, Zhang G, Zhang L, Kem D, Yu X, et al. M2 muscarinic autoantibodies and thyroid hormone promote susceptibility to atrial fibrillation and sinus tachycardia in an autoimmune rabbit model. Exp Physiol. 2021;106:882–90.

    Article  CAS  PubMed  Google Scholar 

  29. Nussinovitch U, Shoenfeld Y. The diagnostic and clinical significance of anti-muscarinic receptor autoantibodies. Clin Rev Allergy Immunol. 2012;42:298–308.

    Article  CAS  PubMed  Google Scholar 

  30. Cabral-Marques O, Riemekasten G. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat Rev Rheumatol. 2017;13:648–56.

    Article  CAS  PubMed  Google Scholar 

  31. Unal H, Jagannathan R, Karnik SS. Mechanism of GPCR-directed autoantibodies in diseases. Adv Exp Med Biol. 2012;749:187–99.

    Article  CAS  PubMed  Google Scholar 

  32. Gunning WT 3rd, Kvale H, Kramer PM, Karabin BL, Grubb BP. Postural orthostatic tachycardia syndrome is associated with elevated G-protein coupled receptor autoantibodies. J Am Heart Assoc. 2019;8:e013602.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yu X, Riemekasten G, Petersen F. Autoantibodies against muscarinic acetylcholine receptor M3 in Sjogren’s syndrome and corresponding mouse models. Front Biosci (Landmark Ed). 2018;23:2053–64.

    Article  CAS  PubMed  Google Scholar 

  34. Barlow RB, Weston-Smith P. The relative potencies of some agonists at M2 muscarinic receptors in guinea-pig ileum, atria and bronchi. Br J Pharmacol. 1985;85:437–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crnosija L, Krbot Skoric M, Adamec I, Lovric M, Junakovic A, Mismas A, et al. Hemodynamic profile and heart rate variability in hyperadrenergic versus non-hyperadrenergic postural orthostatic tachycardia syndrome. Clin Neurophysiol. 2016;127:1639–44.

    Article  PubMed  Google Scholar 

  36. Orjatsalo M, Alakuijala A, Partinen M. Heart rate variability in head-up tilt tests in adolescent postural tachycardia syndrome patients. Front Neurosci. 2020;14:725.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Corkal JC, Palamarchuk I, Kimpinski K. Differences in cardiac autonomic function contributes to heart rate abnormalities in POTS and IST. Auton Neurosci. 2014;186:85–90.

    Article  PubMed  Google Scholar 

  38. Ribeiro AL, Gimenez LE, Hernandez CC, de Carvalho AC, Teixeira MM, Guedes VC, et al. Early occurrence of anti-muscarinic autoantibodies and abnormal vagal modulation in Chagas disease. Int J Cardiol. 2007;117:59–63.

    Article  PubMed  Google Scholar 

  39. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation. 1994;90:1826–31.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang Y, Po SS, Amil F, Dasari TW. Non-invasive low-level tragus stimulation in cardiovascular diseases. Arrhythm Electrophysiol Rev. 2020;9:40–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stavrakis S, Kulkarni K, Singh JP, Katritsis DG, Armoundas AA. Autonomic modulation of cardiac arrhythmias: methods to assess treatment and outcomes. JACC Clin Electrophysiol. 2020;6:467–83.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kakinuma Y, Ando M, Kuwabara M, Katare RG, Okudela K, Kobayashi M, et al. Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Lett. 2005;579:2111–8.

    Article  CAS  PubMed  Google Scholar 

  43. Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, et al. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg. 2009;137:223–31.

    Article  CAS  PubMed  Google Scholar 

  44. Raj SR, Black BK, Biaggioni I, Harris PA, Robertson D. Acetylcholinesterase inhibition improves tachycardia in postural tachycardia syndrome. Circulation. 2005;111:2734–40.

    Article  CAS  PubMed  Google Scholar 

  45. Kanjwal K, Karabin B, Sheikh M, Elmer L, Kanjwal Y, Saeed B, et al. Pyridostigmine in the treatment of postural orthostatic tachycardia: a single-center experience. Pacing Clin Electrophysiol. 2011;34:750–5.

    Article  PubMed  Google Scholar 

  46. Kenney MJ, Ganta CK. Autonomic nervous system and immune system interactions. Compr Physiol. 2014;4:1177–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okamoto LE, Raj SR, Gamboa A, Shibao CA, Arnold AC, Garland EM, et al. Sympathetic activation is associated with increased IL-6, but not CRP in the absence of obesity: lessons from postural tachycardia syndrome and obesity. Am J Physiol Heart Circ Physiol. 2015;309:H2098-2107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat Rev Endocrinol. 2012;8:743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reardon C. Neuro-immune interactions in the cholinergic anti-inflammatory reflex. Immunol Lett. 2016;178:92–6.

    Article  CAS  PubMed  Google Scholar 

  50. Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594:5781–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cox MA, Bassi C, Saunders ME, Nechanitzky R, Morgado-Palacin I, Zheng C, et al. Beyond neurotransmission: acetylcholine in immunity and inflammation. J Intern Med. 2020;287:120–33.

    Article  CAS  PubMed  Google Scholar 

  52. Stavrakis S, Humphrey MB, Scherlag BJ, Hu Y, Jackman WM, Nakagawa H, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol. 2015;65:867–75.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by funding from the National Heart, Lung, and Blood Institute (R01HL128393), an Exploratory Grant award from Harold Hamm Diabetes Center at the University of Oklahoma, grants from Dysautonomia International, and by individual donations from Christy and Aaron Jagdfeld and from Francie Fitzgerald and family through the OU Foundation Webster Fund. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xichun Yu.

Ethics declarations

Ethical approval

This study protocol was approved by the Institutional Animal Care and Use Committee of the University of Oklahoma Health Sciences Center, and conforms to international standards for animal safety and comfort.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Li, H., Guo, Y. et al. Transcutaneous vagus nerve stimulation attenuates autoantibody-mediated cardiovagal dysfunction and inflammation in a rabbit model of postural tachycardia syndrome. J Interv Card Electrophysiol 66, 291–300 (2023). https://doi.org/10.1007/s10840-022-01144-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-022-01144-w

Keywords

Navigation