Left atrial wall thickness is associated with the low-voltage area in patients with paroxysmal atrial fibrillation

  • Yosuke NakataniEmail author
  • Tamotsu Sakamoto
  • Yoshiaki Yamaguchi
  • Yasushi Tsujino
  • Naoya Kataoka
  • Koichiro Kinugawa



To identify a potential morphological marker of remodeling and electrophysiological dysfunction, we investigated if low wall thickness is associated with low-voltage areas (LVAs) in the left atrium.


Wall thickness was measured by computed tomography and LVA (% area with bipolar voltage < 0.5 mV) by voltage mapping in 43 paroxysmal AF patients. The left atrium was divided into five segments: septal wall, anterior wall, roof wall, posterior wall, and bottom wall in regional analysis.


Left atrial wall thickness and LVA were 3.2 ± 0.6 mm and 14% ± 9%, respectively. Multivariate analysis identified left atrial wall thickness and volume as independent determinants of left atrial LVA (thickness, standardized β − 0.374, 95%CI − 23.289 to − 4.534, P = 0.005; volume, standardized β 0.452, 95%CI 0.049–0.214, P = 0.002). In regional analysis, significant LVA (> 10% of segment surface area) was observed in 123 of 215 segments (57%). Segments in the low tertile of wall thickness (< 1.76 mm) had larger LVAs compared with segments in middle (1.76–2.14 mm) and high tertiles (≥ 2.14 mm) (low tertile, 20.3% ± 14.9%; middle tertile, 12.6% ± 11.2%; high tertile, 12.5% ± 12.1%; low vs. middle tertile, P = 0.001; low vs. high tertile, P = 0.001). Area under the receiver operating curve of wall thickness was 0.706 for prediction of significant LVA. A thickness cut-off of 1.90 mm yielded 62% sensitivity, 73% specificity, 75% positive predictive value, and 59% negative predictive value for significant LVA.


A thin left atrial wall is an independent predictor of LVA in patients with paroxysmal AF.


Atrial fibrillation Atrial remodeling Atrial wall thickness Low-voltage area Voltage mapping Left atrium 



The authors thank Mr. Yasushi Terada and Mr. Norihiko Konishi for their technical assistance.

Compliance with ethical standards

The study protocol was approved by the Institutional Research and Ethics Committee of University of Toyama (Toyama, Japan) and adhered to the principles of the Declaration of Helsinki. We obtained written informed consent from all patients before performing catheter ablation.


  1. 1.
    Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63:2335–45.CrossRefGoogle Scholar
  2. 2.
    Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–68.CrossRefGoogle Scholar
  3. 3.
    Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51:802–9.CrossRefGoogle Scholar
  4. 4.
    Nakatani Y, Sakamoto T, Yamaguchi Y, Tsujino Y, Kataoka N, Kinugawa K. P-wave vector magnitude predicts recurrence of atrial fibrillation after catheter ablation in patients with persistent atrial fibrillation. Ann Noninvasive Electrocardiol. 2019.Google Scholar
  5. 5.
    Malcolme-Lawes LC, Juli C, Karim R, Bai W, Quest R, Lim PB, et al. Automated analysis of atrial late gadolinium enhancement imaging that correlates with endocardial voltage and clinical outcomes: a 2-center study. Heart Rhythm. 2013;10:1184–91.CrossRefGoogle Scholar
  6. 6.
    Whitaker J, Rajani R, Chubb H, Gabrawi M, Varela M, Wright M, et al. The role of myocardial wall thickness in atrial arrhythmogenesis. Europace. 2016;18:1758–72.Google Scholar
  7. 7.
    Nakamura K, Funabashi N, Uehara M, Ueda M, Murayama T, Takaoka H, et al. Left atrial wall thickness in paroxysmal atrial fibrillation by multislice-CT is initial marker of structural remodeling and predictor of transition from paroxysmal to chronic form. Int J Cardiol. 2011;148:139–47.CrossRefGoogle Scholar
  8. 8.
    Nakatani Y, Sakamoto T, Yamaguchi Y, Tsujino Y, Kataoka N, Kinugawa K. Heterogeneity in the left atrial wall thickness contributes to atrial fibrillation recurrence after catheter ablation. Heart Vessel. 2018;33:1549–58.CrossRefGoogle Scholar
  9. 9.
    Wi J, Lee HJ, Uhm JS, Kim JY, Pak HN, Lee M, et al. Complex fractionated atrial electrograms related to left atrial wall thickness. J Cardiovasc Electrophysiol. 2014;25:1141–9.CrossRefGoogle Scholar
  10. 10.
    Takahashi K, Okumura Y, Watanabe I, Nagashima K, Sonoda K, Sasaki N, et al. Relation between left atrial wall thickness in patients with atrial fibrillation and intracardiac electrogram characteristics and ATP-provoked dormant pulmonary vein conduction. J Cardiovasc Electrophysiol. 2015;26:597–605.CrossRefGoogle Scholar
  11. 11.
    Vlachos K, Efremidis M, Letsas KP, Bazoukis G, Martin R, Kalafateli M, et al. Low-voltage areas detected by high-density electroanatomical mapping predict recurrence after ablation for paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2017;28:1393–402.CrossRefGoogle Scholar
  12. 12.
    Masuda M, Fujita M, Iida O, Okamoto S, Ishihara T, Nanto K, et al. Left atrial low-voltage areas predict atrial fibrillation recurrence after catheter ablation in patients with paroxysmal atrial fibrillation. Int J Cardiol. 2018;257:97–101.CrossRefGoogle Scholar
  13. 13.
    Müller P, Makimoto H, Dietrich JW, Fochler F, Nentwich K, Krug J, et al. Association of left atrial low-voltage area and thromboembolic risk in patients with atrial fibrillation. Europace. 2018;20:f359–65.CrossRefGoogle Scholar
  14. 14.
    Hohendanner F, Romero I, Blaschke F, Heinzel FR, Pieske B, Boldt LH, et al. Extent and magnitude of low-voltage areas assessed by ultra-high-density electroanatomical mapping correlate with left atrial function. Int J Cardiol. 2018;272:108–12.CrossRefGoogle Scholar
  15. 15.
    Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. Document Reviewers: 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace. 2018;20:e1–160.CrossRefGoogle Scholar
  16. 16.
    Nakatani Y, Kumagai K, Minami K, Nakano M, Inoue H, Oshima S. Location of epicardial adipose tissue affects the efficacy of a combined dominant frequency and complex fractionated atrial electrogram ablation of atrial fibrillation. Heart Rhythm. 2015;12:257–65.CrossRefGoogle Scholar
  17. 17.
    van Bragt KA, Nasrallah HM, Kuiper M, Luiken JJ, Schotten U, Verheule S. Atrial supply-demand balance in healthy adult pigs: coronary blood flow, oxygen extraction, and lactate production during acute atrial fibrillation. Cardiovasc Res. 2014;101:9–19.CrossRefGoogle Scholar
  18. 18.
    Adam O, Frost G, Custodis F, Sussman MA, Schäfers HJ, Böhm M, et al. Role of Rac1 GTPase activation in atrial fibrillation. J Am Coll Cardiol. 2007;50:359–67.CrossRefGoogle Scholar
  19. 19.
    Aimé-Sempé C, Folliguet T, Rücker-Martin C, Krajewska M, Krajewska S, Heimburger M, et al. Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol. 1999;34:1577–86.CrossRefGoogle Scholar
  20. 20.
    Huo Y, Gaspar T, Pohl M, Sitzy J, Richter U, Neudeck S, et al. Prevalence and predictors of low voltage zones in the left atrium in patients with atrial fibrillation. Europace. 2018;20:956–62.CrossRefGoogle Scholar
  21. 21.
    White CW, Kerber RE, Weiss HR, Marcus ML. The effects of atrial fibrillation on atrial pressure-volume and flow relationships. Circ Res. 1982;51:205–15.CrossRefGoogle Scholar
  22. 22.
    Park J, Joung B, Uhm JS, Young Shim C, Hwang C, Hyoung Lee M, et al. High left atrial pressures are associated with advanced electroanatomical remodeling of left atrium and independent predictors for clinical recurrence of atrial fibrillation after catheter ablation. Heart Rhythm. 2014;11:953–60.CrossRefGoogle Scholar
  23. 23.
    Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 2017;3:425–35.CrossRefGoogle Scholar
  24. 24.
    Rodríguez-Mañero M, Valderrábano M, Baluja A, Kreidieh O, Martínez-Sande JL, García-Seara J, et al. Validating left atrial low voltage areas during atrial fibrillation and atrial flutter using multielectrode automated electroanatomic mapping. JACC Clin Electrophysiol. 2018;4:1541–52.CrossRefGoogle Scholar
  25. 25.
    Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999;100:87–95.CrossRefGoogle Scholar
  26. 26.
    Jadidi AS, Lehrmann H, Keyl C, Sorrel J, Markstein V, Minners J, et al. Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ Arrhythm Electrophysiol. 2016;9:e002962.Google Scholar
  27. 27.
    Yagishita A, Gimbel JR, DE Oliveira S, Manyam H, Sparano D, Cakulev I, et al. Long-term outcome of left atrial voltage-guided substrate ablation during atrial fibrillation: a novel adjunctive ablation strategy. J Cardiovasc Electrophysiol. 2017;28:147–55.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Second Department of Internal MedicineUniversity of ToyamaToyamaJapan

Personalised recommendations