Advertisement

Impact of cardiac resynchronization therapy on circulating IL-17 producing cells in patients with advanced heart failure

  • Sílvia Martins
  • Tiago Carvalheiro
  • Paula Laranjeira
  • António Martinho
  • Luís Elvas
  • Lino Gonçalves
  • Cândida Tomaz
  • Natália António
  • Artur PaivaEmail author
Article
  • 53 Downloads

Abstract

Purpose

IL-17-producing T cells have been implicated in the inflammatory milieu of chronic heart failure (CHF), which implies a dismal prognosis in affected patients. The aim of this study was to evaluate the impact of cardiac resynchronization therapy (CRT) on the frequency and functional activity of Th17 and Tc17 cells, as well as, on IL-17 mRNA expression in patients with CHF.

Methods

Twenty-eight patients with CHF, analyzed before CRT (T0) and 6 months later (T6), and 15 healthy controls (HC) were enrolled in this study. Circulating Th17 and Tc17 cells were evaluated by flow cytometry. The quantification of IL-17A mRNA expression was performed by real-time PCR.

Results

Circulating Tc17 cells tended to be higher in CHF patients submitted to CRT than in HC (0.92% (0.24–3.32) versus 0.60% (0.09–3.68), although not reaching statistical significance. The frequency of Tc17 cells in CHF patients significantly decreases after CRT reaching levels similar to those of HC (0.92% (0.24–3.32) at T0 versus 0.56% (0.21–4.20) at T6, P < 0.05), mainly due to responders to CRT. Additionally, the expression of IL-17 mRNA was detected in a few number of responder patients at T0 (27%) and only detected in one responder at T6 (7%). Conversely, in non-responders, the proportion of patients exhibiting IL-17 mRNA expression increases from baseline (17%) to T6 (42%). No significant differences were observed in Th17 cells between HC, CHF patients in T0 and patients in T6.

Conclusion

The inflammatory response mediated by circulating IL-17 producing cells seems to be suppressed by CRT, particularly in responders.

Keywords

Chronic heart failure Cardiac resynchronization therapy Th17 cell Tc17 cell Cytokines 

Notes

Funding information

This study received financial support from the PEst-OE/SAU/UI0709/2014 project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was performed in accordance with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards and the research protocol was approved by the local Ethical Committee.

Informed consent

All the studied patients gave and signed the informed consent.

References

  1. 1.
    Batista ML Jr, Lopes RD, Seelaender MC, Lopes AC. Anti-inflammatory effect of physical training in heart failure: role of TNF-alpha and IL-10. Arq Bras Cardiol. 2009;93:643–51 692–700.CrossRefGoogle Scholar
  2. 2.
    Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2009;11:119–29.CrossRefGoogle Scholar
  3. 3.
    Komamura K. Similarities and differences between the pathogenesis and pathophysiology of diastolic and systolic heart failure. Cardiol Res Pract. 2013;2013:824135.CrossRefGoogle Scholar
  4. 4.
    Athanassopoulos P, Vaessen LM, Maat AP, Balk AH, Weimar W, Bogers AJ. Peripheral blood dendritic cells in human end-stage heart failure and the early post-transplant period: evidence for systemic Th1 immune responses. Eur J Cardiothorac Surg. 2004;25:619–26.CrossRefGoogle Scholar
  5. 5.
    Berry C, Clark AL. Catabolism in chronic heart failure. Eur Heart J. 2000;21:521–32.CrossRefGoogle Scholar
  6. 6.
    Aukrust P, Ueland T, Muller F, Andreassen AK, Nordoy I, Aas H, et al. Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation. 1998;97:1136–43.CrossRefGoogle Scholar
  7. 7.
    Yndestad A, Damas JK, Geir Eiken H, Holm T, Haug T, Simonsen S, et al. Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovasc Res. 2002;54:175–82.CrossRefGoogle Scholar
  8. 8.
    Seixas-Cambao M, Leite-Moreira AF. Pathophysiology of chronic heart failure. Rev Port Cardiol. 2009;28:439–71.Google Scholar
  9. 9.
    Yndestad A, Holm AM, Muller F, Simonsen S, Froland SS, Gullestad L, et al. Enhanced expression of inflammatory cytokines and activation markers in T-cells from patients with chronic heart failure. Cardiovasc Res. 2003;60:141–6.CrossRefGoogle Scholar
  10. 10.
    Evans HG, Gullick NJ, Kelly S, Pitzalis C, Lord GM, Kirkham BW, et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc Natl Acad Sci U S A. 2009;106:6232–7.CrossRefGoogle Scholar
  11. 11.
    Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, et al. Late developmental plasticity in the T helper 17 lineage. Immunity. 2009;30:92–107.CrossRefGoogle Scholar
  12. 12.
    Yu Q, Watson RR, Marchalonis JJ, Larson DF. A role for T lymphocytes in mediating cardiac diastolic function. Am J Physiol Heart Circ Physiol. 2005;289:H643–51.CrossRefGoogle Scholar
  13. 13.
    Li N, Bian H, Zhang J, Li X, Ji X, Zhang Y. The Th17/Treg imbalance exists in patients with heart failure with normal ejection fraction and heart failure with reduced ejection fraction. Clin Chim Acta. 2010;411:1963–8.CrossRefGoogle Scholar
  14. 14.
    Yamaoka-Tojo M, Tojo T, Inomata T, Machida Y, Osada K, Izumi T. Circulating levels of interleukin 18 reflect etiologies of heart failure: Th1/Th2 cytokine imbalance exaggerates the pathophysiology of advanced heart failure. J Card Fail. 2002;8:21–7.CrossRefGoogle Scholar
  15. 15.
    Zhu ZF, Li JJ, Liu J, Tang TT, Ding YJ, Liao YH, et al. Circulating Th17 cells are not elevated in patients with chronic heart failure. Scand Cardiovasc J. 2012;46:295–300.CrossRefGoogle Scholar
  16. 16.
    Lopes A, Machado D, Pedreiro S, Henriques A, Silva I, Tavares B, et al. Different frequencies of Tc17/Tc1 and Th17/Th1 cells in chronic spontaneous urticaria. Int Arch Allergy Immunol. 2013;161:155–62.CrossRefGoogle Scholar
  17. 17.
    Henriques A, Gomes V, Duarte C, Pedreiro S, Carvalheiro T, Areias M, et al. Distribution and functional plasticity of peripheral blood Th(c)17 and Th(c)1 in rheumatoid arthritis. Rheumatol Int. 2013;33:2093–9.CrossRefGoogle Scholar
  18. 18.
    Henriques A, Ines L, Couto M, Pedreiro S, Santos C, Magalhaes M, et al. Frequency and functional activity of Th17, Tc17 and other T-cell subsets in systemic lupus erythematosus. Cell Immunol. 2010;264:97–103.CrossRefGoogle Scholar
  19. 19.
    Hu Y, Ma DX, Shan NN, Zhu YY, Liu XG, Zhang L, et al. Increased number of Tc17 and correlation with Th17 cells in patients with immune thrombocytopenia. PLoS One. 2011;6(10):e26522.CrossRefGoogle Scholar
  20. 20.
    Yen HR, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol. 2009;183(11):7161–8.CrossRefGoogle Scholar
  21. 21.
    McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.CrossRefGoogle Scholar
  22. 22.
    Curtis AB, Yancy CW, Albert NM, Stough WG, Gheorghiade M, Heywood JT, et al. Cardiac resynchronization therapy utilization for heart failure: findings from IMPROVE HF. Am Heart J. 2009;158:956–64.CrossRefGoogle Scholar
  23. 23.
    Yu CM, Gorcsan J 3rd, Bleeker GB, Zhang Q, Schalij MJ, Suffoletto MS, et al. Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. Am J Cardiol. 2007;100:1263–70.CrossRefGoogle Scholar
  24. 24.
    Steffel J, Rempel H, Breitenstein A, Schmidt S, Namdar M, Krasniqi N, et al. Comprehensive cardiac resynchronization therapy (CRT) optimization in the real world. Cardiol J. 2014;21:316–24.CrossRefGoogle Scholar
  25. 25.
    Foley PW, Leyva F, Frenneaux MP. What is treatment success in cardiac resynchronization therapy? Europace. 2009;11(Suppl 5):v58–65.CrossRefGoogle Scholar
  26. 26.
    Brouwers C, Spindler H, Larsen ML, Eiskær H, Videbæk L, Pedersen MS, et al. Association between psychological measures and brain natriuretic peptide in heart failure patients. Scand Cardiovasc J. 2012;46(3):154–62.CrossRefGoogle Scholar
  27. 27.
    Michelucci A, Ricciardi G, Sofi F, Gori AM, Pirolo F, Pieragnoli P, et al. Relation of inflammatory status to major adverse cardiac events and reverse remodeling in patients undergoing cardiac resynchronization therapy. J Card Fail. 2007;13(3):207–10.CrossRefGoogle Scholar
  28. 28.
    Osmancik P, Herman D, Stros P, Linkova H, Vondrak K, Paskova E. Changes and prognostic impact of apoptotic and inflammatory cytokines in patients treated with cardiac resynchronization therapy. Cardiology. 2013;124(3):190–8.CrossRefGoogle Scholar
  29. 29.
    Lappegard KT, Bjørnstad H, Mollnes TE, Hovland A. Effect of cardiac resynchronization therapy on inflammation in congestive heart failure: a review. Scand J Immunol. 2015;82(3):191–8.CrossRefGoogle Scholar
  30. 30.
    Glick A, Michowitz Y, Keren G, George J. Neurohormonal and inflammatory markers as predictors of short-term outcome in patients with heart failure and cardiac resynchronization therapy. Isr Med Assoc J. 2006;8(6):391–5.Google Scholar
  31. 31.
    Shinohara T, Takahashi N, Saito S, Okada N, Wakisaka O, et al. Effect of cardiac resynchronization therapy on cardiac sympathetic nervous dysfunction and serum C-reactive protein level. Pacing Clin Electrophysiol. 2011;34(10):1225–30.CrossRefGoogle Scholar
  32. 32.
    Ramani GV, Uber PA, Mehra MR. Chronic heart failure: contemporary diagnosis and management. Mayo Clin Proc. 2010;85:180–95.CrossRefGoogle Scholar
  33. 33.
    Jameel MN, Zhang J. Heart failure management: the present and the future. Antioxid Redox Signal. 2009;11:1989–2010.CrossRefGoogle Scholar
  34. 34.
    Antonio N, Teixeira R, Lourenco C, Saraiva F, Coelho L, Martins R, et al. Which echocardiographic definition should be used to define response to cardiac resynchronization therapy? Rev Port Cardiol. 2009;28:943–58.Google Scholar
  35. 35.
    Kydd AC, Khan FZ, Ring L, Pugh PJ, Virdee MS, Dutka DP. Development of a multiparametric score to predict left ventricular remodelling and prognosis after cardiac resynchronization therapy. Eur J Heart Fail. 2014;16(11):1206–13.CrossRefGoogle Scholar
  36. 36.
    Doltra A, Bijnens B, Tolosana JM, Borras R, Khatib M, Penela D, et al. Mechanical abnormalities detected with conventional echocardiography are associated with response and midterm survival in CRT. JACC Cardiovasc Imaging. 2014;7:969–79.CrossRefGoogle Scholar
  37. 37.
    Rordorf R, Savastano S, Sanzo A, Spazzolini C, De Amici M, Camporotondo R, et al. Tumor necrosis factor-alpha predicts response to cardiac resynchronization therapy in patients with chronic heart failure. Circ J. 2014;78:2232–9.CrossRefGoogle Scholar
  38. 38.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.CrossRefGoogle Scholar
  39. 39.
    Lichtman AH. The heart of the matter: protection of the myocardium from T cells. J Autoimmun. 2013;45:90–6.CrossRefGoogle Scholar
  40. 40.
    Cai YH, Ma ZJ, Lu XY, He EL, You MY. Study on the effect and mechanism of the dysfunction of CD4(+) T cells in the disease process of chronic cardiac failure. Asian Pac J Trop Med. 2016;9:682–7.CrossRefGoogle Scholar
  41. 41.
    Li XF, Pan D, Zhang WL, Zhou J, Liang JJ. Association of NT-proBNP and interleukin-17 levels with heart failure in elderly patients. Genet Mol Res. 2016;15.Google Scholar
  42. 42.
    Sandip C, Tan L, Huang J, Li Q, Ni L, Cianflone K, et al. Common variants in IL-17A/IL-17RA axis contribute to predisposition to and progression of congestive heart failure. Medicine (Baltimore). 2016;95:e4105.CrossRefGoogle Scholar
  43. 43.
    Min X, Lu M, Tu S, Wang X, Zhou C, Wang S, et al. Serum cytokine profile in relation to the severity of coronary artery disease. Biomed Res Int. 2017;2017:4013685.Google Scholar
  44. 44.
    Milovanovic M, Pesic G, Nikolic V, Jevtovic-Stoimenov T, Vasic K, Jovic Z, et al. Vitamin D deficiency is associated with increased IL-17 and TNFalpha levels in patients with chronic heart failure. Arq Bras Cardiol. 2012;98:259–65.CrossRefGoogle Scholar
  45. 45.
    Lappegard KT, Bjornstad H. Anti-inflammatory effect of cardiac resynchronization therapy. Pacing Clin Electrophysiol. 2006;29:753–8.CrossRefGoogle Scholar
  46. 46.
    Yu CM, Bleeker GB, Fung JW, Schalij MJ, Zhang Q, et al. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation. 2005;112(11):1580–6.CrossRefGoogle Scholar
  47. 47.
    Hatton RD, Weaver CT. Duality in the Th17-Treg developmental decision. F1000 Biol Rep. 2009;1:5.Google Scholar
  48. 48.
    Mesquita D Jr, Cruvinel WM, Camara NO, Kallas EG, Andrade LE. Autoimmune diseases in the TH17 era. Braz J Med Biol Res. 2009;42:476–86.CrossRefGoogle Scholar
  49. 49.
    Adamopoulos S, Parissis JT, Kremastinos DT. A glossary of circulating cytokines in chronic heart failure. Eur J Heart Fail. 2001;3:517–26.CrossRefGoogle Scholar
  50. 50.
    Xu WH, Hu XL, Liu XF, Bai P, Sun YC. Peripheral Tc17 and Tc17/interferon-gamma cells are increased and associated with lung function in patients with chronic obstructive pulmonary disease. Chin Med J (Engl). 2016;129:909–16.CrossRefGoogle Scholar
  51. 51.
    Hayes MD, Ovcinnikovs V, Smith AG, Kimber I, Dearman RJ. The aryl hydrocarbon receptor: differential contribution to T helper 17 and T cytotoxic 17 cell development. PLoS One. 2014;9(9):e106955.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sílvia Martins
    • 1
    • 2
  • Tiago Carvalheiro
    • 3
  • Paula Laranjeira
    • 2
    • 4
  • António Martinho
    • 3
  • Luís Elvas
    • 5
    • 6
  • Lino Gonçalves
    • 5
    • 6
  • Cândida Tomaz
    • 1
    • 7
  • Natália António
    • 5
    • 6
  • Artur Paiva
    • 2
    • 4
    • 8
    • 9
    Email author
  1. 1.CICS-UBI – Centro de Investigação em Ciências da SaúdeUniversidade da Beira InteriorCovilhãPortugal
  2. 2.Coimbra Institute for Clinical and Biomedical ResearchFaculdade de MedicinaCoimbraPortugal
  3. 3.Centro do Sangue e da Transplantação de CoimbraInstituto Português do Sangue e da TransplantaçãoCoimbraPortugal
  4. 4.Flow Cytometry Unit, Department of Clinical PathologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
  5. 5.Cardiology DepartmentCoimbra Hospital and Universitary CentreCoimbraPortugal
  6. 6.Faculty of MedicineCoimbra UniversityCoimbraPortugal
  7. 7.Departamento de QuímicaUniversidade da Beira InteriorCovilhãPortugal
  8. 8.Instituto Politécnico de CoimbraESTESC - Coimbra Health School, Ciências Biomédicas LaboratoriaisCoimbraPortugal
  9. 9.Unidade de Gestão Operacional de Citometria, Serviço de Patologia ClínicaCentro Hospitalar e Universitário de CoimbraCoimbraPortugal

Personalised recommendations