Poor scar formation after ablation is associated with atrial fibrillation recurrence

  • Bhrigu R. Parmar
  • Tyler R. Jarrett
  • Eugene G. Kholmovski
  • Nan Hu
  • Dennis Parker
  • Rob S. MacLeod
  • Nassir F. Marrouche
  • Ravi Ranjan



Patients routinely undergo ablation for atrial fibrillation (AF) but the recurrence rate remains high. We explored in this study whether poor scar formation as seen on late-gadolinium enhancement magnetic resonance imaging (LGE-MRI) correlates with AF recurrence following ablation.


We retrospectively identified 94 consecutive patients who underwent their initial ablation for AF at our institution and had pre-procedural magnetic resonance angiography (MRA) merged with left atrial (LA) anatomy in an electroanatomic mapping (EAM) system, ablated areas marked intraprocedurally in EAM, 3-month post-ablation LGE-MRI for assessment of scar, and minimum of 3-months of clinical follow-up. Ablated area was quantified retrospectively in EAM and scarred area was quantified in the 3-month post-ablation LGE-MRI.


With the mean follow-up of 336 days, 26 out of 94 patients had AF recurrence. Age, hypertension, and heart failure were not associated with AF recurrence, but LA size and difference between EAM ablated area and LGE-MRI scar area was associated with higher AF recurrence. For each percent higher difference between EAM ablated area and LGE-MRI scar area, there was a 7–9 % higher AF recurrence (p values 0.001–0.003) depending on the multivariate analysis.


In AF ablation, poor scar formation as seen on LGE-MRI was associated with AF recurrence. Improved mapping and ablation techniques are necessary to achieve the desired LA scar and reduce AF recurrence.


Atrial fibrillation Ablation MRI Recurrence Poor scar formation 



Atrial fibrillation


Left atrium


Magnetic resonance angiography


Late-gadolinium enhancement MRI


Electroanatomic mapping


Pulmonary vein


Intracardiac echocardiography


Ablated surface area as a percentage of LA surface area in EAM


Left atrial wall covered by scar as a percentage of total endocardial surface area of the LA wall in LGE-MRI



Research reported in this publication was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award number K23HL115084 to Ravi Ranjan. This project was also supported by grants from the National Institute of General Medical Sciences (8 P41 GM103545-14) from the National Institutes of Health through the Center for Integrative Biomedical Computing (CIBC).

Conflict of interest

Ravi Ranjan has been a consultant to Biosense Webster.


  1. 1.
    January, C. T., Wann, L. S., Alpert, J. S., Calkins, H., Cigarroa, J. E., Cleveland, J. C., Jr., Conti, J. B., Ellinor, P. T., Ezekowitz, M. D., Field, M. E., Murray, K. T., Sacco, R. L., Stevenson, W. G., Tchou, P. J., Tracy, C. M., & Yancy, C. W. (2014). 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Journal of the American College of Cardiology, 64(21), e1–e76.CrossRefPubMedGoogle Scholar
  2. 2.
    Hof, I., Chilukuri, K., Arbab-Zadeh, A., Scherr, D., Dalal, D., Nazarian, S., Henrikson, C., Spragg, D., Berger, R., Marine, J., & Calkins, H. (2009). Does left atrial volume and pulmonary venous anatomy predict the outcome of catheter ablation of atrial fibrillation? Journal of Cardiovascular Electrophysiology, 20, 1005–1010.CrossRefPubMedGoogle Scholar
  3. 3.
    McGann, C., Akoum, N., Patel, A., Kholmovski, E., Revelo, P., Damal, K., Wilson, B., Cates, J., Harrison, A., Ranjan, R., Burgon, N. S., Greene, T., Kim, D., Dibella, E. V., Parker, D., Macleod, R. S., & Marrouche, N. F. (2014). Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circulation Arrhythmia and Electrophysiology, 7, 23–30.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Dong, J., Dickfeld, T., Dalal, D., Cheema, A., Vasamreddy, C. R., Henrikson, C. A., Marine, J. E., Halperin, H. R., Berger, R. D., Lima, J. A., Bluemke, D. A., & Calkins, H. (2006). Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 17, 459–466.CrossRefPubMedGoogle Scholar
  5. 5.
    Peters, D. C., Wylie, J. V., Hauser, T. H., Kissinger, K. V., Botnar, R. M., Essebag, V., Josephson, M. E., & Manning, W. J. (2007). Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience. Radiology, 243, 690–695.CrossRefPubMedGoogle Scholar
  6. 6.
    Hunter, R. J., Jones, D. A., Boubertakh, R., Malcolme-Lawes, L. C., Kanagaratnam, P., Juli, C. F., Davies, D. W., Peters, N. S., Baker, V., Earley, M. J., Sporton, S., Davies, L. C., Westwood, M., Petersen, S. E., & Schilling, R. J. (2013). Diagnostic accuracy of cardiac magnetic resonance imaging in the detection and characterization of left atrial catheter ablation lesions: a multicenter experience. Journal of Cardiovascular Electrophysiology, 24, 396–403.CrossRefPubMedGoogle Scholar
  7. 7.
    Badger, T. J., Daccarett, M., Akoum, N. W., et al. (2010). Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation: lessons learned from delayed-enhancement MRI in repeat ablation procedures. Circulation Arrhythmia and Electrophysiology, 3, 249–259.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Parmar, B. R., Jarrett, T. R., Burgon, N. S., Kholmovski, E. G., Akoum, N. W., Hu, N., Macleod, R. S., Marrouche, N. F., & Ranjan, R. (2014). Comparison of left atrial area marked ablated in electroanatomical maps with scar in MRI. Journal of Cardiovascular Electrophysiology, 25, 457–463.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Bunch, T. J., & Day, J. D. (2014). The electrophysiologist’s new clothes and the cardiac MRI that told the truth. Journal of Cardiovascular Electrophysiology, 25(5), 464–465.CrossRefPubMedGoogle Scholar
  10. 10.
    McGann, C. J., Kholmovski, E. G., Oakes, R. S., Blauer, J. J., Daccarett, M., Segerson, N., Airey, K. J., Akoum, N., Fish, E., Badger, T. J., DiBella, E. V., Parker, D., MacLeod, R. S., & Marrouche, N. F. (2008). New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. Journal of the American College of Cardiology, 52, 1263–1271.CrossRefPubMedGoogle Scholar
  11. 11.
    Badger, T. J., Oakes, R. S., Daccarett, M., Burgon, N. S., Akoum, N., Fish, E. N., Blauer, J. J., Rao, S. N., Adjei-Poku, Y., Kholmovski, E. G., Vijayakumar, S., Di Bella, E. V., MacLeod, R. S., & Marrouche, N. F. (2009). Temporal left atrial lesion formation after ablation of atrial fibrillation. Heart Rhythm, 6(2), 161–168.CrossRefPubMedGoogle Scholar
  12. 12.
    Ranjan, R. (2012). Magnetic resonance imaging in clinical cardiac electrophysiology. Critical Reviews in Biomedical Engineering, 40, 409–426.CrossRefPubMedGoogle Scholar
  13. 13.
    Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S. A., Crijns, H. J., Damiano, R. J., Jr., Davies, D. W., DiMarco, J., Edgerton, J., Ellenbogen, K., Ezekowitz, M. D., Haines, D. E., Haissaguerre, M., Hindricks, G., Iesaka, Y., Jackman, W., Jalife, J., Jais, P., Kalman, J., Keane, D., Kim, Y. H., Kirchhof, P., Klein, G., Kottkamp, H., Kumagai, K., Lindsay, B. D., Mansour, M., Marchlinski, F. E., McCarthy, P. M., Mont, J. L., Morady, F., Nademanee, K., Nakagawa, H., Natale, A., Nattel, S., Packer, D. L., Pappone, C., Prystowsky, E., Raviele, A., Reddy, V., Ruskin, J. N., Shemin, R. J., Tsao, H. M., & Wilber, D. (2012). 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm, 9, 632–696. e621.CrossRefPubMedGoogle Scholar
  14. 14.
    Balk, E. M., Garlitski, A. C., Alsheikh-Ali, A. A., Terasawa, T., Chung, M., & Ip, S. (2010). Predictors of atrial fibrillation recurrence after radiofrequency catheter ablation: a systematic review. Journal of Cardiovascular Electrophysiology, 21, 1208–1216.CrossRefPubMedGoogle Scholar
  15. 15.
    Kuck, K. H., Reddy, V. Y., Schmidt, B., Natale, A., Neuzil, P., Saoudi, N., Kautzner, J., Herrera, C., Hindricks, G., Jaïs, P., Nakagawa, H., Lambert, H., & Shah, D. C. (2012). A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm, 9, 18–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Miller, M. A., d’Avila, A., Dukkipati, S. R., Koruth, J. S., Viles-Gonzalez, J., Napolitano, C., Eggert, C., Fischer, A., Gomes, J. A., & Reddy, V. Y. (2012). Acute electrical isolation is a necessary but insufficient endpoint for achieving durable PV isolation: the importance of closing the visual gap. Europace, 14, 653–660.CrossRefPubMedGoogle Scholar
  17. 17.
    McGann, C., Kholmovski, E., Blauer, J., Vijayakumar, S., Haslam, T., Cates, J., DiBella, E., Burgon, N., Wilson, B., Alexander, A., Prastawa, M., Daccarett, M., Vergara, G., Akoum, N., Parker, D., MacLeod, R., & Marrouche, N. (2011). Dark regions of no-reflow on late gadolinium enhancement magnetic resonance imaging result in scar formation after atrial fibrillation ablation. Journal of the American College of Cardiology, 58, 177–185.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Dickfeld, T., Kato, R., Zviman, M., Nazarian, S., Dong, J., Ashikaga, H., Lardo, A. C., Berger, R. D., Calkins, H., & Halperin, H. (2007). Characterization of acute and subacute radiofrequency ablation lesions with nonenhanced magnetic resonance imaging. Heart Rhythm, 4, 208–214.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Sohns, C., Karim, R., Harrison, J., Arujuna, A., Linton, N., Sennett, R., Lambert, H., Leo, G., Williams, S., Razavi, R., Wright, M., Schaeffter, T., O’Neill, M., & Rhode, K. (2013). Quantitative magnetic resonance imaging analysis of the relationship between contact force and left atrial scar formation after catheter ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 25, 138–145.Google Scholar
  20. 20.
    Ranjan, R., Kato, R., Zviman, M. M., Dickfeld, T. M., Roguin, A., Berger, R. D., Tomaselli, G. F., & Halperin, H. R. (2011). Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI. Circulation Arrhythmia and Electrophysiology, 4, 279–286.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Dickfeld, T., Kato, R., Zviman, M., Lai, S., Meininger, G., Lardo, A. C., Roguin, A., Blumke, D., Berger, R., Calkins, H., & Halperin, H. (2006). Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. Journal of the American College of Cardiology, 47, 370–378.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Lardo, A. C., McVeigh, E. R., Jumrussirikul, P., Berger, R. D., Calkins, H., Lima, J., & Halperin, H. R. (2000). Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation, 102, 698–705.CrossRefPubMedGoogle Scholar
  23. 23.
    Ranjan, R., Kholmovski, E. G., Blauer, J., Vijayakumar, S., Volland, N. A., Salama, M. E., Parker, D. L., MacLeod, R., & Marrouche, N. F. (2012). Identification and acute targeting of gaps in atrial ablation lesion sets using a real-time magnetic resonance imaging system. Circulation Arrhythmia and Electrophysiology, 5, 1130–1135.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Piorkowski, C., Grothoff, M., Gaspar, T., Eitel, C., Sommer, P., Huo, Y., John, S., Gutberlet, M., & Hindricks, G. (2013). Cavotricuspid isthmus ablation guided by real-time magnetic resonance imaging. Circulation Arrhythmia and Electrophysiology, 6, e7–e10.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bhrigu R. Parmar
    • 1
  • Tyler R. Jarrett
    • 1
  • Eugene G. Kholmovski
    • 1
  • Nan Hu
    • 2
  • Dennis Parker
    • 1
  • Rob S. MacLeod
    • 1
  • Nassir F. Marrouche
    • 1
  • Ravi Ranjan
    • 1
  1. 1.CARMA Center, Division of CardiologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Internal MedicineUniversity of UtahSalt Lake CityUSA

Personalised recommendations