Advertisement

Magnetic guidance versus manual control: comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom

  • Abhishek BhaskaranEmail author
  • M. A. (Tony) Barry
  • Sara I. Al Raisi
  • William Chik
  • Doan Trang Nguyen
  • Jim Pouliopoulos
  • Chrishan Nalliah
  • Roger Hendricks
  • Stuart Thomas
  • Alistair L McEwan
  • Pramesh Kovoor
  • Aravinda Thiagalingam
MULTIMEDIA REPORT

Abstract

Background

Magnetic navigation system (MNS) ablation was suspected to be less effective and unstable in highly mobile cardiac regions compared to radiofrequency (RF) ablations with manual control (MC). The aim of the study was to compare the (1) lesion size and (2) stability of MNS versus MC during irrigated RF ablation with and without simulated mechanical heart wall motion.

Methods

In a previously validated myocardial phantom, the performance of Navistar RMT Thermocool catheter (Biosense Webster, CA, USA) guided with MNS was compared to manually controlled Navistar irrigated Thermocool catheter (Biosense Webster, CA, USA). The lesion dimensions were compared with the catheter in inferior and superior orientation, with and without 6-mm simulated wall motion. All ablations were performed with 40 W power and 30 ml/ min irrigation for 60 s.

Results

A total of 60 ablations were performed. The mean lesion volumes with MNS and MC were 57.5 ± 7.1 and 58.1 ± 7.1 mm3, respectively, in the inferior catheter orientation (n = 23, p = 0.6), 62.8 ± 9.9 and 64.6 ± 7.6 mm3, respectively, in the superior catheter orientation (n = 16, p = 0.9). With 6-mm simulated wall motion, the mean lesion volumes with MNS and MC were 60.2 ± 2.7 and 42.8 ± 8.4 mm3, respectively, in the inferior catheter orientation (n = 11, p = <0.01*), 74.1 ± 5.8 and 54.2 ± 3.7 mm3, respectively, in the superior catheter orientation (n = 10, p = <0.01*). During 6-mm simulated wall motion, the MC catheter and MNS catheter moved 5.2 ± 0.1 and 0 mm, respectively, in inferior orientation and 5.5 ± 0.1 and 0 mm, respectively, in the superior orientation on the ablation surface.

Conclusions

The lesion dimensions were larger with MNS compared to MC in the presence of simulated wall motion, consistent with greater catheter stability. However, similar lesion dimensions were observed in the stationary model.

Keywords

Magnetic navigation system Stereotaxis RF ablation Efficacy Stability Gel tank Myocardial phantom Catheter sliding Simulated wall motion 

Abbreviations

MNS

Magnetic navigation system

MC

Manual control

Notes

Acknowledgments

This study was funded by the Westmead hospital research fund. We thank the staff of the cardiology department.

Conflicts of interest

None of the authors had any conflict of interests.

Supplementary material

ESM 1

(MP4 9984 kb).

ESM 2

(MP4 22677 kb).

ESM 3

(MP4 25800 kb).

ESM 4

(MP4 28206 kb).

References

  1. 1.
    Davis, D. R., Tang, A. S. L., Gollob, M. H., Lemery, R., Green, M. S., & Birnie, D. H. (2008). Remote magnetic navigation-assisted catheter ablation enhances catheter stability and ablation success with lower catheter temperatures. Pacing & Clinical Electrophysiology, 31(7), 893–898.CrossRefGoogle Scholar
  2. 2.
    Bradfield, J., Tung, R., Mandapati, R., Boyle, N. G., & Shivkumar, K. (2012). Catheter ablation utilizing remote magnetic navigation: a review of applications and outcomes. Pacing and Clinical Electrophysiology, 35(8), 1021–1034.CrossRefPubMedGoogle Scholar
  3. 3.
    Bauernfeind, T., Akca, F., Schwagten, B., de Groot, N., Van Belle, Y., Valk, S., et al. (2011). The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias. Europace, 13(7), 1015–1021.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Proietti, R., Pecoraro, V., Di Biase, L., Natale, A., Santangeli, P., Viecca, M., et al. (2013). Remote magnetic with open-irrigated catheter vs. manual navigation for ablation of atrial fibrillation: a systematic review and meta-analysis. Europace, 15(9), 1241–1248.CrossRefPubMedGoogle Scholar
  5. 5.
    Shurrab, M., Danon, A., Lashevsky, I., Kiss, A., Newman, D., Szili-Torok, T., et al. (2013). Robotically assisted ablation of atrial fibrillation: a systematic review and meta-analysis. International Journal of Cardiology, 169(3), 157–165.CrossRefPubMedGoogle Scholar
  6. 6.
    Chun, K. R. J., Wissner, E., Koektuerk, B., Konstantinidou, M., Schmidt, B., Zerm, T., et al. (2010). Remote-controlled magnetic pulmonary vein isolation using a new irrigated-tip catheter in patients with atrial fibrillation. Circulation Arrhythmia & Electrophysiology, 3(5), 458–464.CrossRefGoogle Scholar
  7. 7.
    Schmidt, B., Chun, K. R. J., Tilz, R. R., Koektuerk, B., Ouyang, F., & Kuck, K. H. (2008). Remote navigation systems in electrophysiology. Europace, 10(3), 57–61.Google Scholar
  8. 8.
    Latcu, D. G., Ricard, P., Zarqane, N., Yaici, K., Rinaldi, J. P., Maluski, A., et al. (2009). Robotic magnetic navigation for ablation of human arrhythmias: initial experience. Archives of Cardiovascular Diseases, 102(5), 419–425.CrossRefPubMedGoogle Scholar
  9. 9.
    Miyazaki, S., Shah, A. J., Xhaët, O., Derval, N., Matsuo, S., Wright, M., et al. (2010). Remote magnetic navigation with irrigated tip catheter for ablation of paroxysmal atrial fibrillation. Circulation. Arrhythmia and Electrophysiology, 3(6), 585–589.CrossRefPubMedGoogle Scholar
  10. 10.
    Arya, A., Zaker-Shahrak, R., Sommer, P., Bollmann, A., Wetzel, U., Gaspar, T., et al. (2011). Catheter ablation of atrial fibrillation using remote magnetic catheter navigation: a case–control study. Europace, 13(1), 45–50.CrossRefPubMedGoogle Scholar
  11. 11.
    Schwagten, B., Szili-Torok, T., Rivero-Ayerza, M., Jessurun, E., Valk, S., & Jordaens, L. (2009). Usefulness of remote magnetic navigation for ablation of ventricular arrhythmias originating from outflow regions. Netherlands Heart Journal, 17(6), 245–249.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Kalman, J. M., Fitzpatrick, A. P., Olgin, J. E., Chin, M. C., Lee, R. J., Scheinman, M. M., et al. (1997). Biophysical characteristics of radiofrequency lesion formation in vivo: dynamics of catheter tip–tissue contact evaluated by intracardiac echocardiography. American heart journal, 133(1), 8–18.CrossRefPubMedGoogle Scholar
  13. 13.
    Chik, W. W. B., Barry, M. A., Thavapalachandran, S., Midekin, C., Pouliopoulos, J. I. M., Lim, T. W., et al. (2013). High spatial resolution thermal mapping of radiofrequency ablation lesions using a novel thermochromic liquid crystal myocardial phantom. Journal of Cardiovascular Electrophysiology, 24(11), 1278–1286.CrossRefPubMedGoogle Scholar
  14. 14.
    Shah, D. C., Lambert, H., Nakagawa, H., Langenkamp, A., Aeby, N., & Leo, G. (2010). Area under the real-time contact force curve (force–time integral) predicts radiofrequency lesion size in an in vitro contractile model. Journal of Cardiovascular Electrophysiology, 21(9), 1038–1043.CrossRefPubMedGoogle Scholar
  15. 15.
    Faddis, M. N., Chen, J., Osborn, J., Talcott, M., Cain, M. E., & Lindsay, B. D. (2003). Magnetic guidance system for cardiac electrophysiologya prospective trial of safety and efficacy in humans. Journal of the American College of Cardiology, 42(11), 1952–1958.CrossRefPubMedGoogle Scholar
  16. 16.
    Reddy, V. Y., Shah, D., Kautzner, J., Schmidt, B., Saoudi, N., Herrera, C., et al. (2012). The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart rhythm, 9(11), 1789–1795.CrossRefPubMedGoogle Scholar
  17. 17.
    Faddis, M. N., Blume, W., Finney, J., Hall, A., Rauch, J., Sell, J., et al. (2002). Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation, 106(23), 2980–2985.CrossRefPubMedGoogle Scholar
  18. 18.
    Thornton, A., De Castro, C. B., Van Deel, E., Van Beusekom, H., & Jordaens, L. (2010). An in vivo comparison of radiofrequency cardiac lesions formed by standard and magnetically steered 4 mm tip catheters. Netherlands Heart Journal, 18(2), 66–71.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Gallagher, N., Fear, E. C., Byrd, I. A., & Vigmond, E. J. (2013). Contact geometry affects lesion formation in radio-frequency cardiac catheter ablation. PloS One, 8(9), e73242.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Lüthje, L., Vollmann, D., Seegers, J., Dorenkamp, M., Sohns, C., Hasenfuss, G., et al. (2011). Remote magnetic versus manual catheter navigation for circumferential pulmonary vein ablation in patients with atrial fibrillation. Clinical Research in Cardiology, 100(11), 1003–1011.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Abhishek Bhaskaran
    • 1
    • 2
    Email author
  • M. A. (Tony) Barry
    • 1
    • 2
    • 3
  • Sara I. Al Raisi
    • 1
    • 2
  • William Chik
    • 1
    • 2
  • Doan Trang Nguyen
    • 2
    • 3
  • Jim Pouliopoulos
    • 1
    • 2
  • Chrishan Nalliah
    • 1
    • 2
  • Roger Hendricks
    • 1
  • Stuart Thomas
    • 1
    • 2
  • Alistair L McEwan
    • 3
  • Pramesh Kovoor
    • 1
    • 2
  • Aravinda Thiagalingam
    • 1
    • 2
  1. 1.Cardiology DepartmentWestmead HospitalSydneyAustralia
  2. 2.Sydney Medical SchoolSydneyAustralia
  3. 3.School of Electrical and Information EngineeringUniversity of SydneySydneyAustralia

Personalised recommendations