Cardiovascular applications of therapeutic ultrasound

  • Babak Nazer
  • Edward P Gerstenfeld
  • Akiko Hata
  • Lawrence A Crum
  • Thomas J Matula
REVIEWS

Abstract

Ultrasound (US) has gained widespread use in diagnostic cardiovascular applications. At amplitudes and frequencies typical of diagnostic use, its biomechanical effects on tissue are largely negligible. However, these parameters can be altered to harness US’s thermal and non-thermal effects for therapeutic indications. High-intensity focused ultrasound (HIFU) and extracorporeal shock wave therapy (ECWT) are two therapeutic US modalities which have been investigated for treating cardiac arrhythmias and ischemic heart disease, respectively. Here, we review the biomechanical effects of HIFU and ECWT, their potential therapeutic mechanisms, and pre-clinical and clinical studies demonstrating their efficacy and safety limitations. Furthermore, we discuss other potential clinical applications of therapeutic US and areas in which future research is needed.

Keywords

Ultrasound Atrial fibrillation Ablation Angiogenesis 

References

  1. 1.
    Edler, I., & Hertz, C. H. (2004). The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. 1954. Clinical Physiology And Functional Imaging, 24(3), 118–136.PubMedCrossRefGoogle Scholar
  2. 2.
    Edler, I., & Lindström, K. (2004). The history of echocardiography. Ultrasound In Medicine & Biology, 30(12), 1565–1644.CrossRefGoogle Scholar
  3. 3.
    Donald, I., Macivar, J., & Brown, T. (1958). Investigation of abdominal masses by pulsed ultrasound. Lancet, 1(7032), 1188–1195.PubMedCrossRefGoogle Scholar
  4. 4.
    Lynn, J. G., Zwemer, R. L., Chick, A. J., & Miller, A. E. (1942). A new method for the generation and use of focused ultrasound in experimental biology. The Journal Of General Physiology, 26(2), 179–193.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Meyers, R., Fry, W. J., Fry, F. J., Dreyer, L., Schultz, D., & Noyes, R. (1959). Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders. Journal of Neurosurgery, 16(1), 32–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Miller, D. L., Smith, N. B., Bailey, M. R., Czarnota, G. J., Hynynen, K., & Makin, I. R. S. (2012). Overview of therapeutic ultrasound applications and safety considerations. Journal of Ultrasound in Medicine, 31(4), 623–634.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Fowlkes, J. B. (2008). American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: executive summary. Journal Of Ultrasound In Medicine, 27(4), 503–515.PubMedGoogle Scholar
  8. 8.
    Wu, J. (2007). Shear stress in cells generated by ultrasound. Progress In Biophysics And Molecular Biology, 93(1–3), 363–373.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen, H., Brayman, A. a., Kreider, W., Bailey, M. R., & Matula, T. J. (2011). Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels. Ultrasound In Medicine & Biology, 37(12), 2139–2148.CrossRefGoogle Scholar
  10. 10.
    Chen, H., Kreider, W., Brayman, A. A., Bailey, M. R., & Matula, T. J. (2011). Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Physical Review Letters, 106(3), 34301.CrossRefGoogle Scholar
  11. 11.
    Nagy, J. A., Benjamin, L., Zeng, H., Dvorak, A. M., & Dvorak, H. F. (2008). Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis, 11(2), 109–119.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chatzizisis, Y. S., Coskun, A. U., Jonas, M., Edelman, E. R., Feldman, C. L., & Stone, P. H. (2007). Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. Journal of the American College of Cardiology, 49(25), 2379–2393.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, H., Brayman, A. A., Bailey, M. R., & Matula, T. J. (2010). Blood vessel rupture by cavitation. Urological Research, 38(4), 321–326.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    VanBavel, E. (2007). Effects of shear stress on endothelial cells: possible relevance for ultrasound applications. Progress In Biophysics And Molecular Biology, 93(1–3), 374–383.PubMedCrossRefGoogle Scholar
  15. 15.
    Belcaro, G., Nicolaides, A., Marlinghaus, E., Cesarone, M., Incandela, L., DeSanctis, M., et al. (1998). Shock waves in vascular diseases. An in-vitro study. Angiology, 49(10), 100–101.Google Scholar
  16. 16.
    Nishida, T., Shimokawa, H., Oi, K., Tatewaki, H., Uwatoku, T., Abe, K., et al. (2004). Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation, 110(19), 3055–3061.PubMedCrossRefGoogle Scholar
  17. 17.
    Ciampa, A. R., de Prati, A. C., Amelio, E., Cavalieri, E., Persichini, T., Colasanti, M., et al. (2005). Nitric oxide mediates anti-inflammatory action of extracorporeal shock waves. FEBS letters, 579(30), 6839–6845.PubMedCrossRefGoogle Scholar
  18. 18.
    Mariotto, S., Cavalieri, E., Amelio, E., Ciampa, A. R., de Prati, A. C., Marlinghaus, E., et al. (2005). Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric oxide: Biology and Chemistry, 12(2), 89–96.CrossRefGoogle Scholar
  19. 19.
    Nurzynska, D., Di Meglio, F., Castaldo, C., Arcucci, A., Marlinghaus, E., Russo, S., et al. (2008). Shock waves activate in vitro cultured progenitors and precursors of cardiac cell lineages from the human heart. Ultrasound In Medicine & Biology, 34(2), 334–342.CrossRefGoogle Scholar
  20. 20.
    Di Meglio, F., Nurzynska, D., Castaldo, C., Miraglia, R., Romano, V., De Angelis, A., et al. (2012). Cardiac shock wave therapy: assessment of safety and new insights into mechanisms of tissue regeneration. Journal Of Cellular And Molecular Medicine, 16(4), 936–942.PubMedCrossRefGoogle Scholar
  21. 21.
    Uwatoku, T., Ito, K., Abe, K., Oi, K., Hizume, T., Sunagawa, K., et al. (2007). Extracorporeal cardiac shock wave therapy improves left ventricular remodeling after acute myocardial infarction in pigs. Coronary Artery Disease, 18(5), 397–404.PubMedCrossRefGoogle Scholar
  22. 22.
    Ito, Y., Ito, K., Shiroto, T., Tsuburaya, R., Yi, G. J., Takeda, M., et al. (2010). Cardiac shock wave therapy ameliorates left ventricular remodeling after myocardial ischemia–reperfusion injury in pigs in vivo. Coronary Artery Disease, 21(5), 304–311.PubMedCrossRefGoogle Scholar
  23. 23.
    Hersch, A., & Adam, D. (2011). Premature cardiac contractions produced efficiently by external high-intensity focused ultrasound. Ultrasound In Medicine & Biology, 37(7), 1101–1110.CrossRefGoogle Scholar
  24. 24.
    Fukumoto, Y., Ito, A., Uwatoku, T., Matoba, T., Kishi, T., Tanaka, H., et al. (2006). Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coronary Artery Disease, 17, 63–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Kikuchi, Y., Ito, K., Ito, Y., Shiroto, T., Tsuburaya, R., Aizawa, K., et al. (2010). Double-blind and placebo-controlled study of the effectiveness and safety of extracorporeal cardiac shock wave therapy for severe angina pectoris. Circulation Journal, 74(3), 589–591.PubMedCrossRefGoogle Scholar
  26. 26.
    Vasyuk, Y. A., Hadzegova, A. B., Shkolnik, E. L., Kopeleva, M. V., Krikunova, O. V., Iouchtchouk, E. N., et al. (2010). Initial clinical experience with extracorporeal shock wave therapy in treatment of ischemic heart failure. Congestive Heart Failure, 16(5), 226–230.PubMedCrossRefGoogle Scholar
  27. 27.
    Gutersohn, Achim; Caspari, Guido H., Marlinghaus, Ernst; Haude, M. (2006). Comparison of cardiac shock wave therapy and percutaneous laser revascularization therapy in endstage CAD patients with refractory angina. World Congress of Cardiology and ESC Conference.Google Scholar
  28. 28.
    Wang, Y., Guo, T., Cai, H.-Y., Ma, T.-K., Tao, S.-M., Chen, M.-Q., et al. (2010). Extracorporeal cardiac shock wave therapy for treatment of coronary artery disease. Chinese Journal of Cardiovascular Diseases, 38(8), 711–715.Google Scholar
  29. 29.
    Peng, Y., Guo, T., Yang, P., Yang, H., Zhou, P., Wang, Y., et al. (2012). Effects of extracorporeal cardiac shock wave therapy in patients with ischemic heart failure. Chinese Journal of Cardiovascular Diseases, 40(2), 141–146.Google Scholar
  30. 30.
    Yang, P., Guo, T., Wang, W., Peng, Y.-Z., Wang, Y., Zhou, P., et al. (2013). Randomized and double-blind controlled clinical trial of extracorporeal cardiac shock wave therapy for coronary heart disease. Heart and vessels, 28(3), 284–291.PubMedCrossRefGoogle Scholar
  31. 31.
    Clinicaltrials.gov. Retrieved June 2, 2013, from www.clinicaltrials.gov
  32. 32.
    Taylor, J. (2011). Recent pioneering cardiology developments in Japan: Japanese cardiologists have discovered Waon therapy for severe or refractory heart failure and extracorporeal cardiac shock wave therapy for severe angina pectoris. European heart journal, 32(14), 1690–1691.PubMedGoogle Scholar
  33. 33.
    Ninet, J., Roques, X., Seitelberger, R., Deville, C., Pomar, J. L., Robin, J., et al. (2005). Surgical ablation of atrial fibrillation with off-pump, epicardial, high-intensity focused ultrasound: results of a multicenter trial. The Journal Of Thoracic And Cardiovascular Surgery, 130(3), 803–809.PubMedCrossRefGoogle Scholar
  34. 34.
    Mitnovetski, S., Almeida, A. A., Goldstein, J., Pick, A. W., & Smith, J. A. (2009). Epicardial high-intensity focused ultrasound cardiac ablation for surgical treatment of atrial fibrillation. Heart, Lung & Circulation, 18(1), 28–31.CrossRefGoogle Scholar
  35. 35.
    Schopka, S., Schmid, C., Keyser, A., Kortner, A., Tafelmeier, J., Diez, C., et al. (2010). Ablation of atrial fibrillation with the Epicor system: a prospective observational trial to evaluate safety and efficacy and predictors of success. Journal of Cardiothoracic Surgery, 5, 34.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Klinkenberg, T. J., Ahmed, S., Ten Hagen, A., Wiesfeld, A. C. P., Tan, E. S., Zijlstra, F., et al. (2009). Feasibility and outcome of epicardial pulmonary vein isolation for lone atrial fibrillation using minimal invasive surgery and high intensity focused ultrasound. Europace, 11(12), 1624–1631.PubMedCrossRefGoogle Scholar
  37. 37.
    Nakagawa, H., Antz, M., Wong, T., Schmidt, B., Ernst, S., Ouyang, F., et al. (2007). Initial experience using a forward directed, high-intensity focused ultrasound balloon catheter for pulmonary vein antrum isolation in patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 18(2), 136–144.PubMedCrossRefGoogle Scholar
  38. 38.
    Metzner, A., Chun, K. R. J., Neven, K., Fuernkranz, A., Ouyang, F., Antz, M., et al. (2010). Long-term clinical outcome following pulmonary vein isolation with high-intensity focused ultrasound balloon catheters in patients with paroxysmal atrial fibrillation. Europace, 12(2), 188–193.PubMedCrossRefGoogle Scholar
  39. 39.
    Schmidt, B., Chun, K. R. J., Metzner, A., Fuernkranz, A., Ouyang, F., & Kuck, K.-H. (2009). Pulmonary vein isolation with high-intensity focused ultrasound: results from the HIFU 12F study. Europace, 11(10), 1281–1288.PubMedCrossRefGoogle Scholar
  40. 40.
    Neven, K., Schmidt, B., Metzner, A., Otomo, K., Nuyens, D., De Potter, T., et al. (2010). Fatal end of a safety algorithm for pulmonary vein isolation with use of high-intensity focused ultrasound. Circulation: Arrhythmia and Electrophysiology, 3(3), 260–265.Google Scholar
  41. 41.
    Haqqani, H. M., Tschabrunn, C. M., Tzou, W. S., Dixit, S., Cooper, J. M., Riley, M. P., et al. (2011). Isolated septal substrate for ventricular tachycardia in nonischemic dilated cardiomyopathy: incidence, characterization, and implications. Heart Rhythm, 8(8), 1169–1176.PubMedCrossRefGoogle Scholar
  42. 42.
    Tung, R., Michowitz, Y., Yu, R., Mathuria, N., Vaseghi, M., Buch, E., et al. (2013). Epicardial ablation of ventricular tachycardia: an institutional experience of safety and efficacy. Heart Rhythm, 10(4), 490–498.PubMedCrossRefGoogle Scholar
  43. 43.
    D’Avila, A., Gutierrez, P., Scanavacca, M., Reddy, V., Lustgarten, D. L., Sosa, E., et al. (2002). Effects of radiofrequency pulses delivered in the vicinity of the coronary arteries: implications for nonsurgical transthoracic epicardial catheter ablation to treat ventricular tachycardia. Pacing and Clinical Electrophysiology, 25(10), 1488–1495.PubMedCrossRefGoogle Scholar
  44. 44.
    Koruth, J. S., Dukkipati, S., Carrillo, R. G., Coffey, J., Teng, J., Eby, T. B., et al. (2011). Safety and efficacy of high-intensity focused ultrasound atop coronary arteries during epicardial catheter ablation. Journal of cardiovascular electrophysiology, 22(11), 1274–1280.PubMedCrossRefGoogle Scholar
  45. 45.
    Abe, Y., Otsuka, R., Muratore, R., Fujikura, K., Okajima, K., Suzuki, K., et al. (2008). In vitro mitral chordal cutting by high intensity focused ultrasound. Ultrasound In Medicine & Biology, 34(3), 400–405.CrossRefGoogle Scholar
  46. 46.
    Takei, Y., Muratore, R., Kalisz, A., Okajima, K., Fujimoto, K., Hasegawa, T., et al. (2012). In vitro atrial septal ablation using high-intensity focused ultrasound. Journal of the American Society of Echocardiography, 25(4), 467–472.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu, Z., Owens, G., Gordon, D., Cain, C., & Ludomirsky, A. (2010). Noninvasive creation of an atrial septal defect by histotripsy in a canine model. Circulation, 121(6), 742–749.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Owens, G. E., Miller, R. M., Ensing, G., Ives, K., Gordon, D., Ludomirsky, A., et al. (2011). Therapeutic ultrasound to noninvasively create intracardiac communications in an intact animal model. Catheterization And Cardiovascular Interventions, 77(4), 580–588.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Strickberger, S. A., Tokano, T., Kluiwstra, J. U., Morady, F., & Cain, C. (1999). Extracardiac ablation of the canine atrioventricular junction by use of high-intensity focused ultrasound. Circulation, 100(2), 203–208.PubMedCrossRefGoogle Scholar
  50. 50.
    Doomernik, D. E., Schrijver, A. M., Zeebregts, C. J., de Vries, J.-P. P. M., & Reijnen, M. M. (2011). Advancements in catheter-directed ultrasound-accelerated thrombolysis. Journal of Endovascular Therapy, 18(3), 418–434.PubMedCrossRefGoogle Scholar
  51. 51.
    Assmus, B., Walter, D. H., Seeger, F. H., Leistner, D. M., Steiner, J., Ziegler, I., et al. (2013). Effect of shock wave-facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure: the CELLWAVE randomized clinical trial. Journal of the American Medical Association, 309(15), 1622–1631.PubMedCrossRefGoogle Scholar
  52. 52.
    Oi, K., Fukumoto, Y., Ito, K., Uwatoku, T., Abe, K., Hizume, T., et al. (2008). Extracorporeal shock wave therapy ameliorates hindlimb ischemia in rabbits. The Tohoku Journal Of Experimental Medicine, 214(2), 151–158.PubMedCrossRefGoogle Scholar
  53. 53.
    De Sanctis, M., Belcaro, G., Nicolaides, A., Cesarone, M., Incandela, L., Marlinghaus, E., et al. (2000). Effects of shock waves on the microcirculaation in critical limb ischemia (CLI) (8-week study). Angiology, 51(8), 83–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Babak Nazer
    • 1
  • Edward P Gerstenfeld
    • 1
  • Akiko Hata
    • 2
  • Lawrence A Crum
    • 3
  • Thomas J Matula
    • 3
  1. 1.Division of CardiologyUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Cardiovascular Research InstituteUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations