Right ventricular lead adjustment in cardiac resynchronization therapy and acute hemodynamic response: a pilot study

  • Prabhat Kumar
  • Gaurav A. Upadhyay
  • Christine Cavaliere-Ogus
  • E. Kevin Heist
  • Robert K. Altman
  • Neal A. Chatterjee
  • Kimberly A. Parks
  • Jagmeet P. Singh
Article

Abstract

Purpose

Optimal left ventricular (LV) lead position has emerged as an important determinant of response after cardiac resynchronization therapy (CRT). Comparatively, strategy for right ventricular (RV) lead optimization remains uncertain.

Methods

Three variations of RV lead position (apex, mid-septal, and high septal) were tested in seven consecutive patients. At each location, intra-procedural measurement of LV lead electrical delay (LVLED) was obtained during intrinsic rhythm and RV pacing (RV-LVLED). Simultaneous cardiac output assessment was performed using the LiDCO™ (lithium chloride indicator dilution) system. Final RV lead location was selected based on best-measured cardiac output. Clinical and echocardiographic outcomes were assessed at baseline and 6 months.

Results

Adjustment of RV lead position after securing a LV lead site led to an incremental change of 30 ± 18 % (range, 7–52 %) in the cardiac index (CI). There was substantial variation in acute hemodynamic response (∆CI, 14 ± 13 %; range, 3–41 %) seen with pacing from each patient’s worst to best RV lead position; no single RV lead position emerged as optimal across all patients. Paced RV-LVLED was not correlated with percent change in CI (r = 0.18; p = NS). LV ejection fraction (LVEF) increased significantly (28 ± 4 to 40 ± 8 %, p = 0.006) at 6 months. LVLED measured during intrinsic rhythm, but not during RV pacing, correlated with percent change in LVEF (r = 0.88, p = 0.02).

Conclusions

RV lead position adjustment can be used to enhance acute hemodynamic response during CRT. Measurement of paced RV-LVLED, however, does not reliably predict change in cardiac output.

Keywords

Cardiac resynchronization therapy Right ventricular lead position Left ventricular lead position Left ventricular lead electrical delay Hemodynamic response 

Abbreviations

CRT

Cardiac resynchronization therapy

LV

Left ventricle

RV

Right ventricle

LVLED

Left ventricular lead electrical delay

RV-LVLED

RV-LV interlead electrical delay

LVEF

LV ejection fraction

NYHA

New York Heart Association

MLHFQ

Minnesota living with heart failure questionnaire

CI

Cardiac index

AV

Atrio-ventricular

VV

Interventricular

Notes

Acknowledgment

This study was supported in part by a research grant from Medtronic Inc.

Conflict of interest

Christine Cavaliere is an employee of and receives salary support from Medtronic. E. Kevin Heist receives honoraria from Biotronik, Boston Scientific, Medtronic, St. Jude Medical, and Sorin group; receives research grants from Biotronik, St. Jude Medical, and Boston Scientific; and is consultant to Boston Scientific, St. Jude Medical, and Sorin group (all modest). Kimberly A. Parks received honoraria from Sorin Group and Research grants from Medtronic, St. Jude Medical, and Sorin Group. Jagmeet P Singh has received research grants from St. Jude Medical, Medtronic Inc., Boston Scientific Corp., and Biotronik; has received honoraria/speaker fees from Medtronic Inc., Biotronik, Guidant Corp, Sorin group, and St. Jude Medical; and has served on advisory Board/Steering Committee and as consultant to Boston Scientific Corp., Biotronik, St. Jude Medical, Medtronic, Sorin Group, Cardioinsight, and Thoratec Inc. All other authors have no potential conflicts of interest.

References

  1. 1.
    McAlister, F. A., Ezekowitz, J., Hooton, N., Vandermeer, B., Spooner, C., Dryden, D. M., et al. (2007). Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. Journal of the American Medical Association, 297, 2502–2514.PubMedCrossRefGoogle Scholar
  2. 2.
    Abraham, W. T., Fisher, W. G., Smith, A. L., Delurgio, D. B., Leon, A. R., Loh, E., et al. (2002). Cardiac resynchronization in chronic heart failure. The New England Journal of Medicine, 346, 1845–1853.PubMedCrossRefGoogle Scholar
  3. 3.
    Cleland, J. G., Daubert, J. C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., et al. (2005). The effect of cardiac resynchronization on morbidity and mortality in heart failure. The New England Journal of Medicine, 352, 1539–1549.PubMedCrossRefGoogle Scholar
  4. 4.
    St John Sutton, M. G., Plappert, T., Abraham, W. T., Smith, A. L., DeLurgio, D. B., Leon, A. R., et al. (2003). Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation, 107, 1985–1990.PubMedCrossRefGoogle Scholar
  5. 5.
    Cabrera-Bueno, F., Molina-Mora, M. J., Alzueta, J., Pena-Hernandez, J., Jimenez-Navarro, M., Fernandez-Pastor, J., et al. (2010). Persistence of secondary mitral regurgitation and response to cardiac resynchronization therapy. European Journal of Echocardiography, 11, 131–137.PubMedCrossRefGoogle Scholar
  6. 6.
    Fornwalt, B. K., Sprague, W. W., BeDell, P., Suever, J. D., Gerritse, B., Merlino, J. D., et al. (2010). Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. Circulation, 121, 1985–1991.PubMedCrossRefGoogle Scholar
  7. 7.
    Ypenburg, C., van Bommel, R. J., Delgado, V., Mollema, S. A., Bleeker, G. B., Boersma, E., et al. (2008). Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. Journal of the American College of Cardiology, 52, 1402–1409.PubMedCrossRefGoogle Scholar
  8. 8.
    Becker, M., Hoffmann, R., Schmitz, F., Hundemer, A., Kuhl, H., Schauerte, P., et al. (2007). Relation of optimal lead positioning as defined by three-dimensional echocardiography to long-term benefit of cardiac resynchronization. The American Journal of Cardiology, 100, 1671–1676.PubMedCrossRefGoogle Scholar
  9. 9.
    Blendea, D., Shah, R. V., Auricchio, A., Nandigam, V., Orencole, M., Heist, E. K., et al. (2007). Variability of coronary venous anatomy in patients undergoing cardiac resynchronization therapy: a high-speed rotational venography study. Heart Rhythm, 4, 1155–1162.PubMedCrossRefGoogle Scholar
  10. 10.
    Tournoux, F. B., Alabiad, C., Fan, D., Chen, A. A., Chaput, M., Heist, E. K., et al. (2007). Echocardiographic measures of acute haemodynamic response after cardiac resynchronization therapy predict long-term clinical outcome. European Heart Journal, 28, 1143–1148.PubMedCrossRefGoogle Scholar
  11. 11.
    Oguz, E., Dagdeviren, B., Bilsel, T., Akdemir, O., Erdinler, I., Akyol, A., et al. (2002). Echocardiographic prediction of long-term response to biventricular pacemaker in severe heart failure. European Journal of Heart Failure, 4, 83–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Butter, C., Auricchio, A., Stellbrink, C., Fleck, E., Ding, J., Yu, Y., et al. (2001). Effect of resynchronization therapy stimulation site on the systolic function of heart failure patients. Circulation, 104, 3026–3029.PubMedCrossRefGoogle Scholar
  13. 13.
    Singh, J. P., Fan, D., Heist, E. K., Alabiad, C. R., Taub, C., Reddy, V., et al. (2006). Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm, 3, 1285–1292.PubMedCrossRefGoogle Scholar
  14. 14.
    van Gelder, B. M., Meijer, A., & Bracke, F. A. (2009). Timing of the left ventricular electrogram and acute hemodynamic changes during implant of cardiac resynchronization therapy devices. Pacing and Clinical Electrophysiology, 32(Suppl 1), S94–S97.PubMedCrossRefGoogle Scholar
  15. 15.
    Altman, R. K., Parks, K. A., Schlett, C. L., Orencole, M., Park, M. Y., Truong, Q. A., et al. (2012). Multidisciplinary care of patients receiving cardiac resynchronization therapy is associated with improved clinical outcomes. European Heart Journal, 33, 2181–2188.PubMedCrossRefGoogle Scholar
  16. 16.
    Cleland, J. G., Daubert, J. C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., et al. (2001). The CARE-HF study (CArdiac REsynchronisation in Heart Failure study): rationale, design and end-points. European Journal of Heart Failure, 3, 481–489.PubMedCrossRefGoogle Scholar
  17. 17.
    Leon, A. R., Abraham, W. T., Brozena, S., Daubert, J. P., Fisher, W. G., Gurley, J. C., et al. (2005). Cardiac resynchronization with sequential biventricular pacing for the treatment of moderate-to-severe heart failure. Journal of the American College of Cardiology, 46, 2298–2304.PubMedCrossRefGoogle Scholar
  18. 18.
    Linton, R. A., Band, D. M., & Haire, K. M. (1993). A new method of measuring cardiac output in man using lithium dilution. British Journal of Anaesthesia, 71, 262–266.PubMedCrossRefGoogle Scholar
  19. 19.
    Cecconi, M., Dawson, D., Grounds, R. M., & Rhodes, A. (2009). Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Medicine, 35, 498–504.PubMedCrossRefGoogle Scholar
  20. 20.
    Gold, M. R., Auricchio, A., Hummel, J. D., Giudici, M. C., Ding, J., Tockman, B., et al. (2005). Comparison of stimulation sites within left ventricular veins on the acute hemodynamic effects of cardiac resynchronization therapy. Heart Rhythm, 2, 376–381.PubMedCrossRefGoogle Scholar
  21. 21.
    Dekker, A. L., Phelps, B., Dijkman, B., van der Nagel, T., van der Veen, F. H., Geskes, G. G., et al. (2004). Epicardial left ventricular lead placement for cardiac resynchronization therapy: optimal pace site selection with pressure-volume loops. The Journal of Thoracic and Cardiovascular Surgery, 127, 1641–1647.PubMedCrossRefGoogle Scholar
  22. 22.
    Becker, M., Kramann, R., Franke, A., Breithardt, O. A., Heussen, N., Knackstedt, C., et al. (2007). Impact of left ventricular lead position in cardiac resynchronization therapy on left ventricular remodelling. A circumferential strain analysis based on 2D echocardiography. European Heart Journal, 28, 1211–1220.PubMedCrossRefGoogle Scholar
  23. 23.
    Rossillo, A., Verma, A., Saad, E. B., Corrado, A., Gasparini, G., Marrouche, N. F., et al. (2004). Impact of coronary sinus lead position on biventricular pacing: mortality and echocardiographic evaluation during long-term follow-up. Journal of Cardiovascular Electrophysiology, 15, 1120–1125.PubMedCrossRefGoogle Scholar
  24. 24.
    Wilton, S. B., Shibata, M. A., Sondergaard, R., Cowan, K., Semeniuk, L., & Exner, D. V. (2008). Relationship between left ventricular lead position using a simple radiographic classification scheme and long-term outcome with resynchronization therapy. Journal of Interventional Cardiac Electrophysiology, 23, 219–227.PubMedCrossRefGoogle Scholar
  25. 25.
    Singh, J. P., Heist, E. K., Ruskin, J. N., & Harthorne, J. W. (2006). “Dialing-in” cardiac resynchronization therapy: overcoming constraints of the coronary venous anatomy. Journal of Interventional Cardiac Electrophysiology, 17, 51–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Riedlbauchova, L., Cihak, R., Bytesnik, J., Vancura, V., Fridl, P., Hoskova, L., et al. (2006). Optimization of right ventricular lead position in cardiac resynchronisation therapy. European Journal of Heart Failure, 8, 609–614.PubMedCrossRefGoogle Scholar
  27. 27.
    Vidal, B., Sitges, M., Marigliano, A., Delgado, V., Diaz-Infante, E., Azqueta, M., et al. (2007). Optimizing the programation of cardiac resynchronization therapy devices in patients with heart failure and left bundle branch block. The American Journal of Cardiology, 100, 1002–1006.PubMedCrossRefGoogle Scholar
  28. 28.
    Boriani, G., Biffi, M., Muller, C. P., Seidl, K. H., Grove, R., Vogt, J., et al. (2009). A prospective randomized evaluation of VV delay optimization in CRT-D recipients: echocardiographic observations from the RHYTHM II ICD study. Pacing and Clinical Electrophysiology, 32(Suppl 1), S120–S125.PubMedCrossRefGoogle Scholar
  29. 29.
    Occhetta, E., Bortnik, M., Magnani, A., Francalacci, G., Piccinino, C., Plebani, L., et al. (2006). Prevention of ventricular desynchronization by permanent para-Hisian pacing after atrioventricular node ablation in chronic atrial fibrillation: a crossover, blinded, randomized study versus apical right ventricular pacing. Journal of the American College of Cardiology, 47, 1938–1945.PubMedCrossRefGoogle Scholar
  30. 30.
    Pastore, G., Zanon, F., Noventa, F., Baracca, E., Aggio, S., Corbucci, G., et al. (2010). Variability of left ventricular electromechanical activation during right ventricular pacing: implications for the selection of the optimal pacing site. Pacing and Clinical Electrophysiology, 33, 566–574.PubMedCrossRefGoogle Scholar
  31. 31.
    Zanon, F., Bacchiega, E., Rampin, L., Aggio, S., Baracca, E., Pastore, G., et al. (2008). Direct His bundle pacing preserves coronary perfusion compared with right ventricular apical pacing: a prospective, cross-over mid-term study. Europace, 10, 580–587.PubMedCrossRefGoogle Scholar
  32. 32.
    ten Cate, T. J., Scheffer, M. G., Sutherland, G. R., Verzijlbergen, J. F., & van Hemel, N. M. (2008). Right ventricular outflow and apical pacing comparably worsen the echocardiographic normal left ventricle. European Journal of Echocardiography, 9, 672–677.PubMedCrossRefGoogle Scholar
  33. 33.
    Yu, C. C., Liu, Y. B., Lin, M. S., Wang, J. Y., Lin, J. L., & Lin, L. C. (2007). Septal pacing preserving better left ventricular mechanical performance and contractile synchronism than apical pacing in patients implanted with an atrioventricular sequential dual chamber pacemaker. International Journal of Cardiology, 118, 97–106.PubMedCrossRefGoogle Scholar
  34. 34.
    Shimano, M., Inden, Y., Yoshida, Y., Tsuji, Y., Tsuboi, N., Okada, T., et al. (2006). Does RV lead positioning provide additional benefit to cardiac resynchronization therapy in patients with advanced heart failure? Pacing and Clinical Electrophysiology, 29, 1069–1074.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Prabhat Kumar
    • 1
  • Gaurav A. Upadhyay
    • 1
  • Christine Cavaliere-Ogus
    • 1
  • E. Kevin Heist
    • 1
  • Robert K. Altman
    • 1
  • Neal A. Chatterjee
    • 1
  • Kimberly A. Parks
    • 1
  • Jagmeet P. Singh
    • 1
    • 2
  1. 1.Cardiac Arrhythmia Service, Harvard Medical SchoolMassachusetts General Hospital Heart CenterBostonUSA
  2. 2.Cardiac Arrhythmia Service, GRB 109Massachusetts General Hospital Heart CenterBostonUSA

Personalised recommendations