Effect of renal sympathetic denervation on the inducibility of atrial fibrillation during rapid atrial pacing

  • Qingyan Zhao
  • Shengbo Yu
  • Minghui Zou
  • Zixuan Dai
  • Xule Wang
  • Jinping Xiao
  • Congxin HuangEmail author



Atrial fibrillation (AF) is associated with activity of renin–angiotensin–aldosterone system (RAAS). Reduction in renal noradrenaline spillover could be achieved after renal sympathetic denervation (RSD). The relationship between RSD and AF is unknown.


The objective of the study was to investigate the inducibility of AF during atrial rapid pacing after RSD.


Thirteen dogs were used for the study as follows: control group (seven dogs) and RSD group (six dogs). In the control group, dogs were subjected to atrial pacing at 800 beats/min for 7 h, and atrial effective refractory period (AERP) was measured every hour in the status of non-pacing. Subsequently, pacing was stopped and the burst pacing (500 bpm) was repeated to induce AF three times. In the RSD group, after each renal artery ablation, the procedure of pacing and electrophysiological measurement was exactly same as in the control group. Blood was collected before and after pacing to measure the levels of renin, angiotensin II and aldosterone.


There was a persistent decrease in AERP in both groups. However, 7 h after cessation of pacing, the induced number of times and duration of AF were higher in the control group than that in the RSD group (1.0 ± 1.26 vs 3.14 ± 2.54, P = 0.03; 16.5 ± 25.1 vs 86.6 ± 116.4, P = 0.02). The plasma aldosterone concentration increased significantly 7 h after rapid pacing in control group (renin, 119.8 ± 31.1 vs 185.3 ± 103.5 pg/ml, P < 0.01; aldosterone, 288.2 ± 43.1 vs 369.6 ± 109.8 pg/ml, P = 0.01). The levels of renin and aldosterone showed a decreasing trend in RSD group, but this did not attain statistical significance.


Episodes of AF could be decreased by renal sympathetic denervation during short-time rapid atrial pacing. This effect might have relationship with decreased activity of RAAS.


Renal sympathetic nerve Ablation Renin–angiotensin–aldosterone system Atrial fibrillation 



We thank Dr. Hongyao Hu for his support; Xiaohong Wang and Huafen Liu for their assistance; and Yu Liu for providing the multi-polar electrode catheters used in this study. This work was supported by National Natural Science Foundation of China (81070144).

Conflict of interests

The authors have no conflict of interests to disclose.


  1. 1.
    Wijffels, M. C., Kirchhof, C. J., Dorland, R., & Allessie, M. A. (1995). Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation, 92(7), 1954–1968.PubMedCrossRefGoogle Scholar
  2. 2.
    Everett, T. H., 4th, Li, H., Mangrum, J. M., McRury, I. D., Mitchell, M. A., Redick, J. A., et al. (2000). Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation. Circulation, 102(12), 1454–1460.PubMedCrossRefGoogle Scholar
  3. 3.
    Ausma, J., Wijffels, M., Thone, F., Wouters, L., Allessie, M., & Borgers, M. (1997). Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation, 96(9), 3157–3163.PubMedCrossRefGoogle Scholar
  4. 4.
    Tsai, C. T., Lai, L. P., Lin, J. L., Chiang, F. T., Hwang, J. J., Ritchie, M. D., et al. (2004). Renin–angiotensin system gene polymorphisms and atrial fibrillation. Circulation, 109(13), 1640–1646.PubMedCrossRefGoogle Scholar
  5. 5.
    Goette, A., Staack, T., Rocken, C., Arndt, M., Geller, J. C., Huth, C., et al. (2000). Increased expression of extracellular signal regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. Journal of the American College of Cardiology, 35(6), 1669–1677.PubMedCrossRefGoogle Scholar
  6. 6.
    Healey, J. S., Baranchuk, A., Crystal, E., Morillo, C. A., Garfinkle, M., Yusuf, S., et al. (2005). Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. Journal of the American College of Cardiology, 45(11), 1832–1839.PubMedCrossRefGoogle Scholar
  7. 7.
    Ehrlich, J., Hohnloser, S., & Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. European Heart Journal, 27(5), 512–518.PubMedCrossRefGoogle Scholar
  8. 8.
    Kumagai, K., Nakashima, H., Urata, H., Gondo, N., Arakawa, K., & Saku, K. (2003). Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. Journal of the American College of Cardiology, 41(12), 2197–2204.PubMedCrossRefGoogle Scholar
  9. 9.
    Elvan, A., Wylie, K., & Zipes, D. P. (1996). Pacing-induced chronic atrial fibrillation impairs sinus node function in dogs. Electrophysiological remodeling. Circulation, 94(11), 2953–2960.PubMedCrossRefGoogle Scholar
  10. 10.
    Nakashima, H., Kumagai, K., Urata, H., Gondo, N., Ideishi, M., & Arakawa, K. (2000). Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation, 101(22), 2612–2617.PubMedCrossRefGoogle Scholar
  11. 11.
    Chiou, C. W., Eble, J. N., & Zipes, D. P. (1997). Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes the third fat pad. Circulation, 95(11), 2573–2584.PubMedCrossRefGoogle Scholar
  12. 12.
    Schauerte, P., Scherlag, B. J., Pitha, J., Scherlag, M. A., Reynolds, D., Lazzara, R., et al. (2000). Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation, 102(22), 2774–2780.PubMedCrossRefGoogle Scholar
  13. 13.
    Tan, A. Y., Zhou, S., Ogawa, M., Song, J., Chu, M., Li, H., et al. (2008). Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation, 118(9), 916–925.PubMedCrossRefGoogle Scholar
  14. 14.
    Lu, Z., Scherlag, B. J., Lin, J., Niu, G., Fung, K., Zhao, L., et al. (2008). Atrial fibrillation begets atrial fibrillation autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circulation: Arrhythmia and Electrophysiology, 1(3), 184–192.CrossRefGoogle Scholar
  15. 15.
    Goette, A., Honeycutt, C., & Langberg, J. J. (1996). Electrical remodeling in atrial fibrillation: time course and mechanisms. Circulation, 94(11), 2968–2974.PubMedCrossRefGoogle Scholar
  16. 16.
    Tieleman, R. G., De Langen, C., Van Gelder, I. C., de Kam, P. J., Grandjean, J., Bel, K. J., et al. (1997). Verapamil reduces tachycardia-induced electrical remodeling of the atria. Circulation, 95(7), 1945–1953.PubMedCrossRefGoogle Scholar
  17. 17.
    Touyz, R. M., Sventek, P., Lariviere, R., Thibault, G., Fareh, J., Reudelhuber, T., et al. (1996). Cytosolic calcium changes induced by angiotensin II in neonatal rat atrial and ventricular cardiomyocytes are mediated via angiotensin II subtype 1 receptors. Hypertension, 27(5), 1090–1096.PubMedCrossRefGoogle Scholar
  18. 18.
    Laszlo, R., Bentz, K., Konior, A., Eick, C., Schreiner, B., Kettering, K., et al. (2010). Effects of selective mineralocorticoid receptor antagonism on atrial ion currents and early ionic tachycardia-induced electrical remodelling in rabbits. Naunyn-Schmiedeberg’s Archives of Pharmacology, 382(4), 347–356.PubMedCrossRefGoogle Scholar
  19. 19.
    Xiao, H. D., Fuchs, S., Campbell, D. J., Lewis, W., Dudley, S. C., Jr., Kasi, V. S., et al. (2004). Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. American Journal of Pathology, 165(3), 1019–1032.PubMedCrossRefGoogle Scholar
  20. 20.
    Nattel, S., & Opie, L. H. (2006). Controversies in atrial fibrillation. Lancet, 367(9506), 262–272.PubMedCrossRefGoogle Scholar
  21. 21.
    Wyse, D. G., Waldo, A. L., DiMarco, J. P., Domanski, M. J., Rosenberg, Y., Schron, E. B., et al. (2002). A comparison of rate control and rhythm control in patients with atrial fibrillation. New England Journal of Medicine, 347(23), 1825–1833.PubMedCrossRefGoogle Scholar
  22. 22.
    Haissaguerre, M., Jais, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., et al. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New England Journal of Medicine, 339(10), 659–666.PubMedCrossRefGoogle Scholar
  23. 23.
    Shah, A. J., Liu, X., Jadidi, A. S., & Haïssaguerre, M. (2010). Early management of atrial fibrillation: from imaging to drugs to ablation. Natural Reviews Cardiology, 7(6), 345–354.CrossRefGoogle Scholar
  24. 24.
    Dewire, J., & Calkins, H. (2010). State-of-the-art and emerging technologies for atrial fibrillation ablation. Natural Reviews Cardiology, 7(3), 129–138.CrossRefGoogle Scholar
  25. 25.
    Oral, H., Chugh, A., Yoshida, K., Sarrazin, J. F., Kuhne, M., Crawford, T., et al. (2009). A randomized assessment of the incremental role of ablation of complex fractionated atrial electrograms after antral pulmonary vein isolation for long-lasting persistent atrial fibrillation. Journal of the American College of Cardiology, 53(9), 782–789.PubMedCrossRefGoogle Scholar
  26. 26.
    Pokushalov, E., Romanov, A., Shugayev, P., Artyomenko, S., Shirokova, N., Turov, A., et al. (2009). Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm, 6(9), 1257–1264.PubMedCrossRefGoogle Scholar
  27. 27.
    Katritsis, D. G., Giazitzoglou, E., Zografos, T., Pokushalov, E., Po, S. S., & Camm, A. J. (2011). Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study. Heart Rhythm, 8(5), 672–678.PubMedCrossRefGoogle Scholar
  28. 28.
    Po, S. S., Nakagawa, H., & Jackman, W. M. (2009). Localization of left atrial ganglionated plexi in patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 20(10), 1186–1189.PubMedCrossRefGoogle Scholar
  29. 29.
    Kron, J., Kasirajan, V., Wood, M. A., Kowalski, M., Han, F. T., & Ellenbogen, K. A. (2010). Management of recurrent atrial arrhythmias after minimally invasive surgical pulmonary vein isolation and ganglionic plexi ablation for atrial fibrillation. Heart Rhythm, 7(4), 445–451.PubMedCrossRefGoogle Scholar
  30. 30.
    Oh, S., Zhang, Y., Bibevski, S., Marrouche, N. F., Natale, A., & Mazgalev, T. N. (2006). Vagal denervation and atrial fibrillation inducibility: epicardial fat pad ablation does not have long-term effects. Heart Rhythm, 3(6), 701–708.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao, Q. Y., Huang, H., Zhang, S. D., Tang, Y. H., Wang, X., Zhang, Y. G., et al. (2010). The relation between atrial remodeling and inducibility of atrial fibrillation after epicardial ganglionic plexi ablation. Europace, 12(6), 805–810.PubMedCrossRefGoogle Scholar
  32. 32.
    Krum, H., Schlaich, M., Whitbourn, R., Sobotka, P. A., Sadowski, J., Bartus, K., et al. (2009). Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet, 373(9671), 1275–1281.PubMedCrossRefGoogle Scholar
  33. 33.
    Esler, M. D., Krum, H., Sobotka, P. A., Schlaich, M. P., Schmieder, R. E., & Böhm, M. (2010). Symplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet, 376(9756), 1903–1909.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Qingyan Zhao
    • 1
  • Shengbo Yu
    • 1
  • Minghui Zou
    • 1
  • Zixuan Dai
    • 1
  • Xule Wang
    • 1
  • Jinping Xiao
    • 1
  • Congxin Huang
    • 1
    Email author
  1. 1.Cardiovascular Research Institute of Wuhan UniversityRenmin Hospital of Wuhan UniversityWuhan CityPeople’s Republic of China

Personalised recommendations