Temporal and spectral analysis of ventricular fibrillation in humans

  • Gabriel Decebal Latcu
  • Olivier Meste
  • Alexandre Duparc
  • Pierre Mondoly
  • Anne Rollin
  • Marc Delay
  • Philippe Maury
Article

Abstract

Purposes

Analysing ventricular fibrillation (VF) rate and regularity at different sites and at different times may help understanding some of the mechanisms underlying VF in humans.

Methods

Twelve episodes of VF (19.4 ± 5.6 s) were induced during electrophysiological study in eight men (63 ± 14 years old). Calculation of dominant frequency (DF) by fast Fourier transform, short-time Fourier transform, and analysis of the pitch frequency [VF cycle length duration (CL)] were performed. For each episode, we analysed the 12 lead-surface ECG, three unipolar, 10 near-field, and three far-field bipolar recordings by means of three quadripolar catheters positioned at the right ventricular apex (RV apex), right ventricular outflow tract, and at the coronary sinus (exploring the lateral left ventricular epicardium) (LV).

Results

Fast and regular discrete activation covered the whole duration of every intracardiac recording, whereas surface ECG consistently displayed chaotic and fibrillatory pattern. DF (5.25 ± 0.64 Hz) was very similar on surface ECG recordings and in various intracardiac recordings. Intracardiac activation was rather regular during VF despite the fibrillatory process with very low SD of the CL. There were some significant inverse correlations between VF rate and VF regularity. Intracardiac sites displaying the fastest and most regular activations were those including the RV apex. VF rate and stability slightly increased over time. Finally, the parameters exploring the VF rate were found to be well correlated together, as well as parameters of VF regularity

Conclusions

Human VF induced during electrophysiological study has a clear DF of activation and appears quite regular in intracardiac recordings. There is some spatial heterogeneity, which needs to be more detailed in order to localize possible driving sources. Fastest VF are the most regular. Rate and stability tend to increase during the initial phases of VF.

Keywords

Ventricular fibrillation Programmed ventricular stimulation Spectral analysis Rotor Dominant frequency Fast Fourier transform 

References

  1. 1.
    Rogers, J. M., Huang, J., Melnick, S. B., & Ideker, R. E. (2001). Sustained reentry in the left ventricle of fibrillating pig hearts. Circulation Research, 92, 539–545.CrossRefGoogle Scholar
  2. 2.
    Choi, B. R., Nho, W., Liu, T., & Salama, G. (2002). Life span of ventricular fibrillation frequencies. Circulation Research, 91, 339–345.PubMedCrossRefGoogle Scholar
  3. 3.
    Moe, G. K. (1962). On the multiple wavelet hypothesis of atrial fibrillation. Archives Internationales de Pharmacodynamie et de Thérapie, 140, 183–188.Google Scholar
  4. 4.
    Weiss, J. N., Garfinkel, A., Karagueuzian, H. S., Qu, Z., & Chen, P. S. (1999). Chaos and the transition to ventricular fibrillation—a new approach to antiarrhythmic drug evaluation. Circulation, 99, 2819–2826.PubMedGoogle Scholar
  5. 5.
    Pak, H. N., Hong, S. J., Hwang, G. S., Lee, H. S., Park, S. W., Ahn, J. C., et al. (2004). Spatial dispersion of action potential duration restitution kinetics is associated with induction of ventricular tachycardia/fibrillation in humans. Journal of Cardiovascular Electrophysiology, 15, 1357–1363.PubMedCrossRefGoogle Scholar
  6. 6.
    Thomas, S. P., Thiagalingam, A., Wallace, E., Kovoor, P., & Ross, D. L. (2005). Organization of myocardial activation during ventricular fibrillation after myocardial infarction: evidence for sustained high-frequency sources. Circulation, 112, 157–163.PubMedCrossRefGoogle Scholar
  7. 7.
    Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392, 75–78.PubMedCrossRefGoogle Scholar
  8. 8.
    Witkowski, F. X., Leon, L. J., Penkoske, P. A., Giles, W. R., Spanok, M. R., Ditto, W. L., et al. (1998). Spatiotemporal evolution of ventricular fibrillation. Nature, 392, 78–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Samie, F. H., Berenfeld, O., Anumonwo, J., Mironov, S. F., Udassi, S., Beaumont, J., et al. (2001). Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation. Circulation Research, 89, 1216–1223.PubMedCrossRefGoogle Scholar
  10. 10.
    Zaitsev, A. V., Berenfeld, O., Mironov, S. F., Jalife, J., & Pertsov, A. M. (2000). Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circulation Research, 86, 408–417.PubMedGoogle Scholar
  11. 11.
    Everett, T. H., 4th, Wilson, E. E., Foreman, S., & Olgin, J. E. (2005). Mechanisms of ventricular fibrillation in canine models of congestive heart failure and ischemia assessed by in vivo noncontact mapping. Circulation, 112, 1532–1541.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen, P. S., Wu, T. J., Ting, C. T., Karagueuzian, H. S., Garfinkel, A., Lin, S. F., et al. (2003). A tale of 2 fibrillations. Circulation, 108, 2298–2303.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu, T. J., Lin, S. F., Baher, A., Qu, Z., Garfinkel, A., Weiss, J. N., et al. (2004). Mother rotors and the mechanisms of D600-induced type 2 ventricular fibrillation. Circulation, 110, 2110–2118.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu, T. J., Lin, S. F., Weiss, J. N., Ting, C. T., & Chen, P. S. (2002). Two types of ventricular fibrillation in isolated rabbit hearts: importance of excitability and action potential duration restitution. Circulation, 106, 1859–1866.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu, Y. B., Pak, H. N., Lamp, S. T., Okuyama, Y., Hayashi, H., Wu, T. J., et al. (2004). Co-existence of two types of ventricular fibrillation during acute regional ischemia in rabbit ventricles. Journal of Cardiovascular Electrophysiology, 15, 1433–1440.PubMedCrossRefGoogle Scholar
  16. 16.
    Aliot, E., Chauvin, M., Daubert, J. C., Frank, R., Jondeau, G., Leclercq, J. F., et al. (2006). Heart Rhythm Group of the French Society of Cardiology. Indications for implantable automatic ventricular defibrillators. A report from the Heart Rhythm Group of the French Society of Cardiology. Archives des Maladies du Coeur et des Vaisseaux, 99, 141–154.PubMedGoogle Scholar
  17. 17.
    Zipes, D. P., Camm, A. J., Borggrefe, M., Buxton, A. E., Chaitman, B., Fromer, M., et al. (2006). ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for practice guidelines. Circulation, 114, e385–e484.PubMedCrossRefGoogle Scholar
  18. 18.
    Wiggers, C. J. (1930). Studies of ventricular fibrillation produced by electric shock. II. Cinematographic and electrocardiographic observations of the natural process in the dog’s heart. Its inhibition by potassium and the revival of coordinated beats by calcium. American Heart Journal, 5, 351–365.CrossRefGoogle Scholar
  19. 19.
    Fischer, G., & Hintringer, F. (2006). Letter regarding article by Sanders et al, “Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans”. Circulation, 113, e44. author reply e44–e5.PubMedCrossRefGoogle Scholar
  20. 20.
    Meste, O., Khaddoumi, B., Rix, H., Camous, J.P. (2002). A comparison study of stationary and non stationary analysis of signal during ventricular fibrillation. In IEEE 4th International Workshop on Biosignal Interpretation, Como, Italy, pp. 107–110.Google Scholar
  21. 21.
    Nash, M. P., Mourad, A., Clayton, R. H., Sutton, P. M., Bradley, C. P., Hayward, M., et al. (2006). Evidence for multiple mechanisms in human ventricular fibrillation. Circulation, 114, 536–542.PubMedCrossRefGoogle Scholar
  22. 22.
    Nanthakumar, K., Walcott, G. P., Melnick, S., Rogers, J. M., Kay, M. W., Smith, W. M., et al. (2004). Epicardial organization of human ventricular fibrillation. Heart Rhythm, 1, 14–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu, T. J., Ong, J. J., Hwang, C., Lee, J. J., Fishbein, M. C., Czer, L., et al. (1998). Characteristics of wave fronts during ventricular fibrillation in human hearts with dilated cardiomyopathy: role of increased fibrosis in the generation of reentry. J Am Coll Cardiol, 32, 187–196.PubMedCrossRefGoogle Scholar
  24. 24.
    Walcott, G. P., Kay, G. N., Plumb, V. J., Smith, W. M., Rogers, J. M., Epstein, A. E., et al. (2002). Endocardial wave front organization during ventricular fibrillation in humans. Journal of the American College of Cardiology, 39, 109–115.PubMedCrossRefGoogle Scholar
  25. 25.
    Nanthakumar, K., Jalife, J., Massé, S., Downar, E., Pop, M., Asta, J., et al. (2007). Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans. American Journal of Physiology. Heart and Circulatory Physiology, 293, H875–H880.PubMedCrossRefGoogle Scholar
  26. 26.
    Massé, S., Downar, E., Chauhan, V., Sevaptsidis, E., & Nanthakumar, K. (2007). Ventricular fibrillation in myopathic human hearts: mechanistic insights from in vivo global endocardial and epicardial mapping. American Journal of Physiology. Heart and Circulatory Physiology, 292, H2589–H2597.PubMedCrossRefGoogle Scholar
  27. 27.
    Umapathy, K., Masse, S., Sevaptsidis, E., Asta, J., Ross, H., Thavandiran, N., et al. (2009). Regional frequency variation during human ventricular fibrillation. Medical Engineering & Physics, 31, 964–970.CrossRefGoogle Scholar
  28. 28.
    Umapathy, K., Massé, S., Sevaptsidis, E., Asta, J., Krishnan, S. S., & Nanthakumar, K. (2009). Spatiotemporal frequency analysis of ventricular fibrillation in explanted human hearts. IEEE Transactions on Biomedical Engineering, 56, 328–335.PubMedCrossRefGoogle Scholar
  29. 29.
    Torres, J. L., Shah, B. K., Greenberg, R. M., Deger, F. T., & Gerstenfeld, E. P. (2010). A left ventricular epicardial to right ventricular endocardial dominant frequency gradient exists in human ventricular fibrillation. Journal of Interventional Cardiac Electrophysiology, 29, 11–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Goto, Y., Suzuki, I., & Inaba, H. (2003). Frequency of ventricular fibrillation as predictor of one-year survival from out-of-hospital cardiac arrests. The American Journal of Cardiology, 92, 457–459.PubMedCrossRefGoogle Scholar
  31. 31.
    Clayton, R. H., Murray, A., & Campbell, R. W. (1994). Changes in the surface electrocardiogram during the onset of spontaneous ventricular fibrillation in man. European Heart Journal, 15, 184–188.PubMedGoogle Scholar
  32. 32.
    Chorro, F. J., Guerrero, J., Trapero, I., Such-Miquel, L., Mainar, L., Cánoves, J., et al. (2006). Time-frequency analysis of ventricular fibrillation. an experimental study. Revista Española de Cardiología, 59, 869–878.PubMedCrossRefGoogle Scholar
  33. 33.
    Newton, J. C., Johnson, P. L., Justice, R. K., Smith, W. M., & Ideker, R. E. (2002). Estimated global epicardial distribution of activation rate and conduction block during porcine ventricular fibrillation. Journal of Cardiovascular Electrophysiology, 13, 1035–1041.PubMedCrossRefGoogle Scholar
  34. 34.
    Newton, J. C., Smith, W. M., & Ideker, R. E. (2004). Estimated global transmural distribution of activation rate and conduction block during porcine and canine ventricular fibrillation. Circulation Research, 94, 836–842.PubMedCrossRefGoogle Scholar
  35. 35.
    Evans, F. G., Rogers, J. M., Smith, W. M., & Ideker, R. E. (1999). Automatic detection of conduction block based on time–frequency analysis of unipolar electrograms. IEEE Transactions on Biomedical Engineering, 46, 1090–1097.PubMedCrossRefGoogle Scholar
  36. 36.
    Valderrabano, M., Yang, J., Omichi, C., Kil, J., Lamp, S. T., Qu, Z., et al. (2002). Frequency analysis of ventricular fibrillation in swine ventricles. Circulation Research, 90, 213–222.PubMedCrossRefGoogle Scholar
  37. 37.
    Swissa, M., Qu, Z., Ohara, T., Lee, M.-H., Lin, S. F., Garfinkel, A., et al. (2002). Action potential duration restitution and ventricular fibrillation due to rapid focal excitation. American Journal of Physiology. Heart and Circulatory Physiology, 282, H1915–H1923.PubMedGoogle Scholar
  38. 38.
    Bernus, O., Van Eyck, B., Verschelde, H., & Panfilov, A. V. (2002). Transition from ventricular fibrillation to ventricular tachycardia: a simulation study on the role of Ca(2+)-channel blockers in human ventricular tissue. Physics in Medicine and Biology, 47, 4167–4179.PubMedCrossRefGoogle Scholar
  39. 39.
    Oh, P. H. N., YS, L. Y. B., Wu, T. J., Karaguezian, H. S., Lin, S. F., et al. (2003). Catheter ablation of ventricular fibrillation in rabbit ventricles treated with beta-blockers. Circulation, 108, 3149–3156.PubMedCrossRefGoogle Scholar
  40. 40.
    Valderrabano, M., Chen, P. S., & Lin, S. F. (2003). Spatial distribution of phase singularities in ventricular fibrillation. Circulation, 108, 354–359.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim, Y. H., Xie, F., Yashima, M., Wu, T. J., Valderrabano, M., Lee, M. H., et al. (1999). Role of papillary muscle in the generation and maintenance of reentry during ventricular tachycardia and fibrillation in isolated swine right ventricle. Circulation, 100, 1450–1459.PubMedGoogle Scholar
  42. 42.
    Pak, H. N., Kim, Y. H., Lim, H. E., Chou, C. C., Miyauchi, Y., Fang, Y. H., et al. (2006). Role of the posterior papillary muscle and purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and swine: effects of catheter ablation. Journal of Cardiovascular Electrophysiology, 17, 777–783.PubMedCrossRefGoogle Scholar
  43. 43.
    Chow, A. W., Segal, O. R., Davies, D. W., & Peters, N. S. (2004). Mechanism of pacing induced ventricular fibrillation in the infarcted human heart. Circulation, 110, 1725–1730.PubMedCrossRefGoogle Scholar
  44. 44.
    Toal, S. C., Farid, T. A., Selvaraj, R., Chauhan, V. S., Masse, S., Ivanov, J., et al. (2009). Short-term memory and restitution during ventricular fibrillation in human hearts: an in vivo study. Circulation. Arrhythmia and Electrophysiology, 2, 562–570.PubMedCrossRefGoogle Scholar
  45. 45.
    Massé, S., Farid, T., Dorian, P., Umapathy, K., Nair, K., Asta, J., et al. (2009). Effect of global ischemia and reperfusion during ventricular fibrillation in myopathic human hearts. American Journal of Physiology. Heart and Circulatory Physiology, 297, H1984–H1991.PubMedCrossRefGoogle Scholar
  46. 46.
    Massé, S., Downar, E., Chauhan, V., Sevaptsidis, E., & Nanthakumar, K. (2007). Wave similarity of human ventricular fibrillation from bipolar electrograms. Europace, 9, 10–19.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gabriel Decebal Latcu
    • 1
  • Olivier Meste
    • 3
  • Alexandre Duparc
    • 2
  • Pierre Mondoly
    • 2
  • Anne Rollin
    • 2
  • Marc Delay
    • 2
  • Philippe Maury
    • 2
    • 4
  1. 1.Centre Hospitalier Princesse GraceMonaco CedexMonaco
  2. 2.Centre Hospitalier Universitaire RangueilToulouseFrance
  3. 3.Laboratoire d’InformatiqueSignaux et Systèmes I3SSophia AntipolisFrance
  4. 4.Unité de Rythmologie et de Stimulation Cardiaque, Fédération de CardiologieUniversity Hospital RangueilToulouse Cedex 09France

Personalised recommendations