Advertisement

Upper turnaround point of the reentry circuit of common atrial flutter—three-dimensional mapping and entrainment study

  • Yasuo Okumura
  • Ichiro Watanabe
  • Toshiko Nakai
  • Kimie Ohkubo
  • Tatsuya Kofune
  • Sonoko Ashino
  • Masayoshi Kofune
  • Koichi Nagashima
  • Atsushi Hirayama
  • Fumio Suzuki
Article

Abstract

Background

Although the anterior and posterior boundaries of cavotricuspid isthmus-dependent atrial flutter (AFL) are reported to be located at the tricuspid annulus and sinus venosa region or crista terminalis, the exact upper turnaround point of the AFL circuit remains unclear. The aim of this study was to determine the upper turnaround site of the AFL circuit by means of three-dimensional (3D) mapping and entrainment pacing.

Methods

Subjects were 21 patients with counter-clockwise AFL in whom high-density mapping of the high right atrium (RA) and superior vena cava (SVC) orifice was performed with an electroanatomical or non-contact mapping system. Entrainment pacing was performed around the SVC-RA junction.

Results

In 20 of the 21 patients, the wavefront from the septal RA split into two wavefronts: one that traveled anterior to the SVC and another that traveled to the posterior RA where it was blocked. In the remaining patient, the wavefront from the septal RA split into two wavefronts: one that propagated through the anterior portion of the SVC orifice and another that propagated transversely across the posterior portion of the SVC orifice. The two wavefronts joined in the lateral RA. Entrainment pacing from the SVC-RA junction demonstrated that the anterior boundary was within the circuit in all patients, but the posterior boundary also constituted a circuit in four patients.

Conclusions

We surmise that the upper turnaround site of the AFL circuit is located in the anterior portion of the SVC-RA junction in the majority of patients with AFL.

Keywords

Atrial flutter Three-dimensional mapping Reentry circuit 

Notes

Funding source and disclosures

None.

Conflicts of interest

None.

References

  1. 1.
    Kalman, J. M., Olgin, J. E., Saxon, L. A., Lee, R. J., Scheinman, M. M., & Lesh, M. D. (1997). Electrocardiographic and electrophysiologic characterization of atypical atrial flutter in man: use of activation and entrainment mapping and implications for catheter ablation. Journal of Cardiovascular Electrophysiology, 8, 121–144.CrossRefPubMedGoogle Scholar
  2. 2.
    Kalman, J. M., Olgin, J. E., Saxon, L. A., Fisher, W. G., Lee, R. J., & Lesh, M. D. (1996). Activation and entrainment mapping defines the tricuspid annulus as the anterior barrier in typical atrial flutter. Circulation, 94, 398–406.PubMedGoogle Scholar
  3. 3.
    Olgin, J. E., Kalman, J. M., Fitzpatrick, A. P., & Lesh, M. D. (1995). Role of right atrial endocardial structures as barriers to conduction during human type I atrial flutter. Activation and entrainment mapping guided by intracardiac echocardiography. Circulation, 92, 1839–1848.PubMedGoogle Scholar
  4. 4.
    Friedman, P. A., Luria, D., Fenton, A. M., Munger, T. M., Jahangir, A., Shen, W. K., et al. (2000). Global right atrial mapping of human atrial flutter: the presence of posteromedial (sinus venosa region) functional block and double potentials: a study in biplane fluoroscopy and intracardiac echocardiography. Circulation, 101, 1568–1577.PubMedGoogle Scholar
  5. 5.
    Okumura, Y., Watanabe, I., Yamada, T., Ohkubo, K., Sugimura, H., Hashimoto, K., et al. (2004). Relationship between anatomic location of the crista terminalis and double potentials recorded during atrial flutter: intracardiac echocardiographic analysis. Journal of Cardiovascular Electrophysiology, 15, 1426–1432.CrossRefPubMedGoogle Scholar
  6. 6.
    Tsuchiya, T., Okumura, K., Tabuchi, T., Iwasa, A., Yasue, H., & Yamabe, H. (1996). The upper turnover site in the reentry circuit of common atrial flutter. The American Journal of Cardiology, 78, 1439–1442.CrossRefPubMedGoogle Scholar
  7. 7.
    Arribas, F., López-Gil, M., Cosío, F. G., & Núñez, A. (1997). The upper link of human common atrial flutter circuit: definition by multiple endocardial recordings during entrainment. Pacing and Clinical Electrophysiology, 20(12 Pt 1), 2924–2929.CrossRefPubMedGoogle Scholar
  8. 8.
    Shah, D. C., Jaïs, P., Haïssaguerre, M., Chouairi, S., Takahashi, A., Hocini, M., et al. (1997). Three-dimensional mapping of the common atrial flutter circuit in the right atrium. Circulation, 96, 3904–3912.PubMedGoogle Scholar
  9. 9.
    Tai, C. T., Huang, J. L., Lee, P. C., Ding, Y. A., Chang, M. S., & Chen, S. A. (2004). High-resolution mapping around the crista terminalis during typical atrial flutter: new insights into mechanisms. Journal of Cardiovascular Electrophysiology, 15, 406–414.CrossRefPubMedGoogle Scholar
  10. 10.
    Maury, P., Duparc, A., Hebrard, A., El Bayomy, M., & Delay, M. (2008). Prevalence of typical atrial flutter with reentry circuit posterior to the superior vena cava: use of entrainment at the atrial roof. Europace, 10, 190–196.CrossRefPubMedGoogle Scholar
  11. 11.
    Fukuzawa, K., Yoshida, A., Kubo, S., Takano, T., Kiuchi, K., Kanda, G., et al. (2008). Upper turnover portion of the reentry circuit for typical and reverse typical atrial flutter. Pacing and Clinical Electrophysiology, 31, 1160–1167.CrossRefPubMedGoogle Scholar
  12. 12.
    Tai, C. T., Huang, J. L., Lin, Y. K., Hsieh, M. H., Lee, P. C., Ding, Y. A., et al. (2002). Noncontact three-dimensional mapping and ablation of upper loop re-entry originating in the right atrium. Journal of the American College of Cardiology, 40, 746–753.CrossRefPubMedGoogle Scholar
  13. 13.
    Yang, Y., Wahba, G. M., Liu, T., Mangat, I., Keung, E. C., Ursell, P. C., et al. (2005). Site specificity of transverse crista terminalis conduction in patients with atrial flutter. Pacing and Clinical Electrophysiology, 28, 34–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Otomo, K., Okamura, H., Noda, T., Satomi, K., Shimizu, W., Suyama, K., et al. (2006). Site-specific influence of transversal conduction across crista terminalis on recognition of isthmus block. Pacing and Clinical Electrophysiology, 29, 589–599.CrossRefPubMedGoogle Scholar
  15. 15.
    Cheng, J., Cabeen, W. R., Jr., & Scheinman, M. M. (1999). Right atrial flutter due to lower loop reentry. Circulation, 99, 1700–1705.PubMedGoogle Scholar
  16. 16.
    Arenal, A., Almendral, J., Alday, J. M., Villacastín, J., Ormaetxe, J. M., Sande, J. L., et al. (1999). Rate-dependent conduction block of the crista terminalis in patients with typical atrial flutter: influence on evaluation of cavotricuspid isthmus conduction block. Circulation, 99, 2771–2778.PubMedGoogle Scholar
  17. 17.
    Yamabe, H., Misumi, I., Fukushima, H., Ueno, K., Kimura, Y., & Hokamura, Y. (2002). Conduction properties of the crista terminalis and its influence on the right atrial activation sequence in patients with typical atrial flutter. Pacing and Clinical Electrophysiology, 25, 132–141.CrossRefPubMedGoogle Scholar
  18. 18.
    Santucci, P. A., Varma, N., Cytron, J., Akar, J. G., Wilber, D. J., Al Chekakie, M. O., et al. (2009). Electroanatomic mapping of postpacing intervals clarifies the complete active circuit and variants in atrial flutter. Heart Rhythm, 6, 1586–1595.CrossRefPubMedGoogle Scholar
  19. 19.
    Sánchez-Quintana, D., Anderson, R. H., Cabrera, J. A., Climent, V., Martin, R., Farré, J., et al. (2002). The terminal crest: morphological features relevant to electrophysiology. Heart, 88, 406–411.CrossRefPubMedGoogle Scholar
  20. 20.
    Waki, K., Saito, T., & Becker, A. E. (2000). Right atrial flutter isthmus revisited: normal anatomy favors nonuniform anisotropic conduction. Journal of Cardiovascular Electrophysiology, 11, 90–94.CrossRefPubMedGoogle Scholar
  21. 21.
    Ho, S. Y., Anderson, R. H., & Sánchez-Quintana, D. (2002). Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovascular Research, 54, 325–336.CrossRefPubMedGoogle Scholar
  22. 22.
    Matsuyama, T. A., Inoue, S., Kobayashi, Y., Sakai, T., Saito, T., Katagiri, T., et al. (2004). Anatomical diversity and age-related histological changes in the human right atrial posterolateral wall. Europace, 6, 307–315.CrossRefPubMedGoogle Scholar
  23. 23.
    Okumura, Y., Watanabe, I., Ashino, S., Kofune, M., Ohkubo, K., Takagi, Y., et al. (2007). Electrophysiologic and anatomical characteristics of the right atrial posterior wall in patients with and without atrial flutter: analysis by intracardiac echocardiography. Circulation Journal, 71, 636–642.CrossRefPubMedGoogle Scholar
  24. 24.
    Mizumaki, K., Fujiki, A., Nagasawa, H., Nishida, K., Sakabe, M., Sakurai, K., et al. (2002). Relation between transverse conduction capability and the anatomy of the crista terminalis in patients with atrial flutter and atrial fibrillation: analysis by intracardiac echocardiography. Circulation Journal, 66, 1113–1118.CrossRefPubMedGoogle Scholar
  25. 25.
    Kistler, P. M., Sanders, P., Fynn, S. P., Stevenson, I. H., Spence, S. J., Vohra, J. K., et al. (2004). Electrophysiologic and electroanatomic changes in the human atrium associated with age. Journal of the American College of Cardiology, 44, 109–116.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang, K., Ho, S. Y., Gibson, D. G., & Anderson, R. H. (1995). Architecture of atrial musculature in humans. British Heart Journal, 73, 559–565.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yasuo Okumura
    • 1
  • Ichiro Watanabe
    • 1
  • Toshiko Nakai
    • 1
  • Kimie Ohkubo
    • 1
  • Tatsuya Kofune
    • 1
  • Sonoko Ashino
    • 1
  • Masayoshi Kofune
    • 1
  • Koichi Nagashima
    • 1
  • Atsushi Hirayama
    • 1
  • Fumio Suzuki
    • 2
  1. 1.Division of Cardiology, Department of MedicineNihon University School of MedicineItabashi-kuJapan
  2. 2.Division of Cardiology, Department of MedicineFukujuji HospitalKiyose-shiJapan

Personalised recommendations