Long QT syndrome due to a novel mutation in SCN5A: treatment with ICD placement at 1 month and left cardiac sympathetic denervation at 3 months of age

  • Eric S. Silver
  • Leonardo Liberman
  • Wendy K. Chung
  • Henry M. Spotnitz
  • Jonathan M. Chen
  • Michael J. Ackerman
  • Christopher Moir
  • Allan J. Hordof
  • Robert H. Pass
Case Report
  • 108 Downloads

Abstract

We describe the case of a newborn with congenital long QT syndrome, with 2:1 AV block and frequent episodes of Torsades de Pointes (TdP) requiring placement of a dual chamber ICD at 33 days and 3.63 kg, the youngest and smallest patient, thus far reported. Long QT syndrome was diagnosed due to bradycardia in the newborn nursery, with frequent episodes of TdP. The patient was initially treated with magnesium and esmolol then given lidocaine which resulted in dramatic transient normalization of the QTc with 1:1 AV nodal conduction. An attempt to transition to oral sodium channel and beta blockade was unsuccessful. An ICD was placed and dual chamber pacing was initiated which facilitated the transition to an oral medical regimen and ultimate discharge from the hospital. Soon after placement of the ICD, genetic testing revealed a novel F1473C mutation in the SCN5A gene. Episodes of TdP continued and left stellate gangliectomy was performed at 3 months of age. At 30 months follow-up, the patient has occasional, self-limited episodes of TdP and has received rare, successful, and appropriate ICD shocks.

Keywords

Pediatric Long QT Syndrome SCN5A Implantable cardioverter defibrillator Sympathectomy 

References

  1. 1.
    Bankston, J. R., Yue, M., Chung, W., Spyres, M., Pass, R. H., Silver, E., et al. (2007). A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response. PLoS ONE, 2, e1258.PubMedCrossRefGoogle Scholar
  2. 2.
    Jervell, A., & Lange-Nielsen, F. (1957). Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. American Heart Journal, 54, 59–68.PubMedCrossRefGoogle Scholar
  3. 3.
    Ward, O. C. (1964). A new familial cardiac syndrome in children. Journal of the Irish Medical Association, 54, 103–106.PubMedGoogle Scholar
  4. 4.
    Romano, C., Gemme, G., & Pongiglione, R. (1963). Rare cardiac arrhythmias of the pediatric age. Ii. Syncopal attacks due to paroxysmal ventricular fibrillation. (Presentation of 1st Case in Italian Pediatric Literature). Clinica Pediatrica (Bologna), 45, 656–683.Google Scholar
  5. 5.
    Zareba, W., Moss, A. J., Schwartz, P. J., Vincent, G. M., Robinson, J. L., Priori, S. G., et al. (1998). Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. New England Journal of Medicine, 339, 960–965.PubMedCrossRefGoogle Scholar
  6. 6.
    Splawski, I., Shen, J., Timothy, K. W., Lehmann, M. H., Priori, S., Robinson, J. L., et al. (2000). Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 102, 1178–1185.PubMedGoogle Scholar
  7. 7.
    Schwartz, P. J., & Priori, S. G. (2004). Long QT syndrome: genotype-phenotype correlations. In D. P. Zipes & J. Jalife (Eds.), Cardiac Electrophysiology. From Cell to Bedside (pp. 651–659). Philadelphia: Saunders.Google Scholar
  8. 8.
    Trippel, D. L., Parsons, M. K., & Gillette, P. C. (1995). Infants with long-QT syndrome and 2:1 atrioventricular block. American Heart Journal, 130, 1130–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Divekar, A., & Soni, R. (2006). Successful parental use of an automated external defibrillator for an infant with long-QT syndrome. Pediatrics, 118, e526–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Ten Harkel, A. D., Witsenburg, M., de Jong, P. L., Jordaens, L., Wijman, M., & Wilde, A. A. (2005). Efficacy of an implantable cardioverter-defibrillator in a neonate with LQT3 associated arrhythmias. Europace, 7, 77–84.PubMedGoogle Scholar
  11. 11.
    Thogersen, A. M., Helvind, M., Jensen, T., Andersen, J. H., Jacobsen, J. R., & Chen, X. (2001). Implantable cardioverter defibrillator in a 4-month old infant with cardiac arrest associated with a vascular heart tumor. Pacing and Clinical Electrophysiology, 11, 1699–00.CrossRefGoogle Scholar
  12. 12.
    Greene, A. E., Moak, J. P., DiRusso, G., Berger, J. T., Heshmat, Y., & Kuehl, K. S. (2004). Transcutaneous implantation of an internal cardioverter defibrillator in a small infant with recurrent myocardial ischemia and cardiac arrest simulating sudden infant death syndrome. Pacing and Clinical Electrophysiology, 27, 112–116.PubMedCrossRefGoogle Scholar
  13. 13.
    Stephenson, E. A., Batra, A. S., Knilans, T. K., Gow, R. M., Gradaus, R., Balaji, S., et al. (2006). A multicenter experience with novel implantable cardioverter defibrillator configurations in the pediatric and congenital heart disease population. Journal of Cardiovascular Electrophysiology, 17, 41–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Kriebel, T., Ruschewski, W., & Paul, T. (2005). Implantation of an “extracardiac” internal cardioverter defibrillator in a 6-month-old infant. Zeitschrift fuÉr Kardiologie, 94, 415–418.CrossRefGoogle Scholar
  15. 15.
    Gregoratos, G., Abrams, J., Epstein, A. E., Freedman, R. A., Hayes, D. L., Hlatky, M. A., et al. (2002). ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). Circulation, 106, 2145–2161.PubMedCrossRefGoogle Scholar
  16. 16.
    Moss, A. J., Liu, J. E., Gottlieb, S., Locati, E. H., Schwartz, P. J., & Robinson, J. L. (1991). Efficacy of permanent pacing in the management of high-risk patients with long QT syndrome. Circulation, 84, 1524–1529.PubMedGoogle Scholar
  17. 17.
    Priori, S. G., Napolitano, C., Cantu, F., Brown, A. M., & Schwartz, P. J. (1996). Differential response to Na+ channel blockade, beta-adrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long-QT syndrome. Circulation Research, 78, 1009–1015.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Eric S. Silver
    • 1
  • Leonardo Liberman
    • 1
  • Wendy K. Chung
    • 1
  • Henry M. Spotnitz
    • 2
  • Jonathan M. Chen
    • 2
  • Michael J. Ackerman
    • 3
  • Christopher Moir
    • 4
  • Allan J. Hordof
    • 1
  • Robert H. Pass
    • 5
  1. 1.Department of PediatricsNY Presbyterian Hospital—Columbia UniversityNew YorkUSA
  2. 2.Department of SurgeryNY Presbyterian Hospital—Columbia UniversityNew YorkUSA
  3. 3.Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics/Divisions of Cardiovascular Diseases and Pediatric CardiologyMayo ClinicRochesterUSA
  4. 4.Department of SurgeryMayo ClinicRochesterUSA
  5. 5.Pediatric Arrhythmia Service, Division of Pediatric Cardiology, Department of Pediatrics, Montefiore Medical CenterAlbert Einstein College of MedicineBronxUSA

Personalised recommendations