Lack of clinical predictors of optimal V-V delay in patients with cardiac resynchronization devices

  • Avi FischerEmail author
  • Riple Hansalia
  • Samantha Buckley
  • Robin Goldberg
  • Martin Goldman
  • Paul Muntner
  • Davendra Mehta
  • W. Lane Duvall



Cardiac resynchronization therapy (CRT) is a well-established therapy for patients with moderate-to-severe heart failure (HF), left ventricular dysfunction with an ejection fraction ≤ 35% and a QRS on the surface electrocardiogram of ≥130 msec. Device optimization is often performed, adjusting the timing of RV and LV stimulation to produce a pacing sequence that yields the best global cardiac performance. However, no standard guidelines exist for optimization and many invasive and non-invasive techniques have been employed with mixed results. The aim of the present study was to determine whether there are any clinical predictors of the optimal V-V settings in patients implanted with CRT devices.

Methods and results

We prospectively evaluated 47 consecutive patients with HF who were referred to our device optimization clinic. The mean patient age was 64.9 ± 12.7 years. Patients were in both sinus rhythm (83%) and atrial fibrillation. Prior to device implant, 51% of patients had left bundle branch block (LBBB), 17% had intra-ventricular conduction delay (IVCD) and 21% were RV paced. Sixty-two percent were male, the mean QRS duration was 152 ± 29 ms, mean LVEF 26 ± 8% and 60% had a non-ischemic cardiomyopathy. Overall, 82% of patients required sequential pacing with 69% requiring LV pre-excitation to produce the best global cardiac function as determined by aortic velocity time integrals (VTI). In our cohort, none of the clinical characteristics evaluated, including etiology of the cardiomyopathy, QRS duration, LVEF, pre-implant rhythm or AV delay were predictive of an optimal simultaneous or sequential V-V setting.


None of the clinical variables tested in our analysis predicted optimal RV-LV settings. Our results suggest that individual optimization and programming of V-V settings is necessary. The inability to predict optimal settings likely reflects the unique characteristics of each patient and supports the need for individualized programming of each device.


Cardiac resynchronization therapy Sequential BiV pacing V-V optimization 



This study was funded in part by a grant from the American Society of Echocardiography.


  1. 1.
    Abraham, W. T., Fisher, W. G., Smith, A. L., et al. (2002). Cardiac resynchronization in chronic heart failure. The New England Journal of Medicine, 346, 1845–1853.PubMedCrossRefGoogle Scholar
  2. 2.
    Cazeau, S., Leclercq, C., Lavergne, T., et al. (2001). Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. The New England Journal of Medicine, 344, 873–880.PubMedCrossRefGoogle Scholar
  3. 3.
    Cleland, J. G., Daubert, J. C., Erdmann, E., et al. (2005). The effect of cardiac resynchronization on morbidity and mortality in heart failure. The New England Journal of Medicine, 352, 1539–1549.PubMedCrossRefGoogle Scholar
  4. 4.
    Bristow, M. R., Saxon, L. A., Boehmer, J., et al. (2004). Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. The New England Journal of Medicine, 350, 2140–2150.PubMedCrossRefGoogle Scholar
  5. 5.
    Reuter, S., Garrigue, S., Barold, S. S., et al. (2002). Comparison of characteristics in responders versus nonresponders with biventricular pacing for drug-resistant congestive heart failure. The American Journal of Cardiology, 89, 346–350.PubMedCrossRefGoogle Scholar
  6. 6.
    Richardson, M., Freemantle, N., Calvert, M. J., Cleland, J. G., & Tavazzi, L. (2007). Predictors and treatment response with cardiac resynchronization therapy in patients with heart failure characterized by dyssynchrony: a pre-defined analysis from the CARE-HF trial. European Heart Journal, 28, 1827–1834.PubMedCrossRefGoogle Scholar
  7. 7.
    Bax, J. J., Van der Wall, E. E., & Schalij, M. J. (2002). Cardiac resynchronization therapy for heart failure. The New England Journal of Medicine, 347, 1803–1804 author reply 1803–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Bordachar, P., Lafitte, S., Reuter, S., et al. (2004). Echocardiographic parameters of ventricular dyssynchrony validation in patients with heart failure using sequential biventricular pacing. Journal of the American College of Cardiology, 44, 2157–2165.PubMedCrossRefGoogle Scholar
  9. 9.
    Leon, A. R., Abraham, W. T., Brozena, S., et al. (2005). Cardiac resynchronization with sequential biventricular pacing for the treatment of moderate-to-severe heart failure. Journal of the American College of Cardiology, 46, 2298–2304.PubMedCrossRefGoogle Scholar
  10. 10.
    Sogaard, P., Egeblad, H., Pedersen, A. K., et al. (2002). Sequential versus simultaneous biventricular resynchronization for severe heart failure: evaluation by tissue Doppler imaging. Circulation, 106, 2078–2084.PubMedCrossRefGoogle Scholar
  11. 11.
    Rao, R. K., Kumar, U. N., Schafer, J., Viloria, E., De Lurgio, D., & Foster, E. (2007). Reduced ventricular volumes and improved systolic function with cardiac resynchronization therapy: a randomized trial comparing simultaneous biventricular pacing, sequential biventricular pacing, and left ventricular pacing. Circulation, 115, 2136–2144.PubMedCrossRefGoogle Scholar
  12. 12.
    Boriani, G., Muller, C. P., Seidl, K. H., et al. (2006). Randomized comparison of simultaneous biventricular stimulation versus optimized interventricular delay in cardiac resynchronization therapy. The resynchronization for the hemodynamic treatment for heart failure management ii implantable cardioverter defibrillator (RHYTHM II ICD) study. American Heart Journal, 151, 1050–1058.PubMedCrossRefGoogle Scholar
  13. 13.
    Parreira, L., Santos, J. F., Madeira, J., et al. (2005). Cardiac resynchronization therapy with sequential biventricular pacing: impact of echocardiography guided VV delay optimization on acute results. Revista Portuguesa de Cardiologia, 24, 1355–1365.PubMedGoogle Scholar
  14. 14.
    Hasan, A., Abraham, W. T., Quinn-Tate, L., Brown, L., & Amkieh, A. (2006). Optimization of cardiac resynchronization devices using acoustic cardiography: a comparison to echocardiography. Congestive Heart Failure (Greenwich, Conn.), 12, 25–31.CrossRefGoogle Scholar
  15. 15.
    Vidal, B., Tamborero, D., Mont, L., et al. (2007). Electrocardiographic optimization of interventricular delay in cardiac resynchronization therapy: a simple method to optimize the device. Journal of Cardiovascular Electrophysiology, 18, 1252–1257.PubMedCrossRefGoogle Scholar
  16. 16.
    Gorcsan 3rd, J., Abraham, T., Agler, D. A., et al. (2008). Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting—a report from the American society of echocardiography dyssynchrony writing group endorsed by the heart rhythm society. Journal of the American Society of Echocardiography, 21, 191–213.PubMedCrossRefGoogle Scholar
  17. 17.
    Bax, J. J., Abraham, T., Barold, S. S., et al. (2005). Cardiac resynchronization therapy: Part 1—issues before device implantation. Journal of the American College of Cardiology, 46, 2153–2167.PubMedCrossRefGoogle Scholar
  18. 18.
    Bleeker, G. B., Yu, C. M., Nihoyannopoulos, P., et al. (2007). Optimal use of echocardiography in cardiac resynchronisation therapy. Heart (British Cardiac Society), 93, 1339–1350.Google Scholar
  19. 19.
    Auricchio, A., & Salo, R. W. (1997). Acute hemodynamic improvement by pacing in patients with severe congestive heart failure. Pacing and Clinical Electrophysiology, 20, 313–324.PubMedCrossRefGoogle Scholar
  20. 20.
    Sutton, M. G., Plappert, T., Hilpisch, K. E., Abraham, W. T., Hayes, D. L., & Chinchoy, E. (2006). Sustained reverse left ventricular structural remodeling with cardiac resynchronization at one year is a function of etiology: quantitative Doppler echocardiographic evidence from the multicenter insync randomized clinical evaluation (MIRACLE). Circulation, 113, 266–272.PubMedCrossRefGoogle Scholar
  21. 21.
    Ypenburg, C., Schalij, M. J., Bleeker, G. B., et al. (2007). Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. European Heart Journal, 28, 33–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Bleeker, G. B., Schalij, M. J., Van Der Wall, E. E., & Bax, J. J. (2006). Postero-lateral scar tissue resulting in non-response to cardiac resynchronization therapy. Journal of Cardiovascular Electrophysiology, 17, 899–901.PubMedCrossRefGoogle Scholar
  23. 23.
    Ypenburg, C., Roes, S. D., Bleeker, G. B., et al. (2007). Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. The American Journal of Cardiology, 99, 657–660.PubMedCrossRefGoogle Scholar
  24. 24.
    Vanderheyden, M., De Backer, T., Rivero-Ayerza, M., et al. (2005). Tailored echocardiographic interventricular delay programming further optimizes left ventricular performance after cardiac resynchronization therapy. Heart Rhythm, 2, 1066–1072.PubMedCrossRefGoogle Scholar
  25. 25.
    Gabriel, R. S., Bakshi, T. K., Scott, A. G., et al. (2007). Reliability of echocardiographic indices of dyssynchrony. Echocardiography (Mount Kisco, N.Y.), 24, 40–46.Google Scholar
  26. 26.
    Beshai, J. F., Grimm, R. A., Nagueh, S. F., et al. (2007). Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. The New England Journal of Medicine, 357, 2461–2471.PubMedCrossRefGoogle Scholar
  27. 27.
    Ghio, S. (2007). Results of the predictors of response to CRT (PROSPECT) trial. Hotline Late Breaking Clinical Trials. Vienna, Austria: European Society of Cardiology.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Avi Fischer
    • 1
    • 2
    Email author
  • Riple Hansalia
    • 1
  • Samantha Buckley
    • 1
  • Robin Goldberg
    • 1
  • Martin Goldman
    • 1
  • Paul Muntner
    • 1
  • Davendra Mehta
    • 1
  • W. Lane Duvall
    • 1
  1. 1.Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular HealthMount Sinai School of MedicineNew YorkUSA
  2. 2.Electrophysiology SectionMount Sinai Medical CenterNew YorkUSA

Personalised recommendations