Venous valves within left ventricular coronary veins

  • Sara E. Anderson
  • Jason L. Quill
  • Paul A. IaizzoEmail author



The purpose of this study was to quantify and characterize venous valves within the major left ventricular (LV) veins of human hearts.


Fiberscope cameras were inserted into the coronary sinus and were manipulated to major LV coronary veins of perfusion fixed human hearts (n = 26). Observed venous valves were categorized by type and location and compared among the major LV veins.


Discernible venous valves were present in 23 of 26 examined hearts (89%); altogether, 105 valves were identified. Sixty-one of the valves were observed at the ostia to smaller branch veins (58% of all valves observed).


Coronary venous valves could hinder or aid in the advancement of guide wires, catheters, and/or the placement of leads for a variety of cardiac interventional procedures. The characterization and quantification of venous valves could explain the difficulty or success in accessing targeted coronary venous locations.


Coronary veins Left ventricle Valves 



The authors would like to sincerely thank LifeSource and the University of Minnesota Anatomy Bequest Program for their assistance with this study and the generous individuals and families who, by donating their hearts for research, made this study possible. We would also like to thank Gary Williams for his assistance with the figures and video compilation and Monica Mahre for her assistance with the preparation of this manuscript. This work was supported in part by the Institute for Engineering in Medicine at the University of Minnesota and by Medtronic.

Supplementary material


The video is organized by vein: anterior interventricular veins, great cardiac veins, posterior veins of the left ventricle, and posterior interventricular veins. At the beginning of each vein, a figure shows its anatomical location. Still images with each representative valve color highlighted aid visualization in subsequent video footage (MPG 19.00 MB)


  1. 1.
    Arbelo, E., Caballero, E., Garcia, A., Delgado, A., Amador, C., Melian, F., et al. (2006). Abstract 2886: The anatomy of the coronary venous system: A major determinant for cardiac resynchronization. Circulation, 114(Supplement 18), II_605.Google Scholar
  2. 2.
    Blendea, D., Shah, R., Mela, T., Danik, S., Mansour, M., Heist, E. K., et al. (2006). Abstract 2887: The best angiographic view for left ventricular lead placement is highly variable between patients: A rotational coronary venography study. Circulation, 114(Supplement 18), II_605.Google Scholar
  3. 3.
    Schumacher, B., Tebbenjohanns, J., Pfeiffer, D., Omran, H., Jung, W., & Luderitz, B. (1995). Prospective study of retrograde coronary venography in patients with posteroseptal and left-sided accessory atrioventricular pathways. American Heart Journal, 130(5), 1031–1039.PubMedCrossRefGoogle Scholar
  4. 4.
    Van De Veire, N. R., Bleeker, G. B., De Sutter, J., Ypenburg, C., Holman, E. R., van der Wall, E. E., et al. (2006). Abstract 2139: Tissue synchronization imaging accurately measures left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. Circulation, 114(Supplement 18), II_434.Google Scholar
  5. 5.
    Hsing, J. M., Grimm, R. A., Garcia, M. J., Martin, D. O., Saliba, W. I., Tchou, P. J., et al. (2006). Abstract 3187: MSCT Coronary venous anatomy is comparable to direct angiographic venous anatomy in identifying suitable coronary veins for cardiac resynchronization therapy. Circulation, 114(Supplement 18), II_675.Google Scholar
  6. 6.
    Corcoran, S. J., Lawrence, C., & McGuire, M. A. (1999). The valve of Vieussens: An important cause of difficulty in advancing catheters into the cardiac veins. Journal of Cardiovascular Electrophysiology, 10(6), 804–808.PubMedCrossRefGoogle Scholar
  7. 7.
    Karaca, M., Bilge, O., Dinckal, M. H., & Ucerler, H. (2005). The anatomic barriers in the coronary sinus: Implications for clinical procedures. Journal of Interventional Cardiac Electrophysiology, 14(2), 89–94.PubMedCrossRefGoogle Scholar
  8. 8.
    von Ludinghausen, M. (2003). The venous drainage of the human myocardium. Advances in Anatomy, Embryology, and Cell Biology, 168(I–VIII), 1–104.Google Scholar
  9. 9.
    Anderson, S. E., Hill, A. J., & Iaizzo, P. A. (2007). Venous valves: Unseen obstructions to coronary access. Journal of Interventional Cardiac Electrophysiology, 19(3), 165–166.PubMedCrossRefGoogle Scholar
  10. 10.
    Maric, I., Bobinac, D., Ostojic, L., Petkovic, M., & Dujmovic, M. (1996). Tributaries of the human and canine coronary sinus. Acta Anatomica (Basel), 156(1), 61–69.CrossRefGoogle Scholar
  11. 11.
    Maros, T. N., Racz, L., Plugor, S., & Maros, T. G. (1983). Contributions to the morphology of the human coronary sinus. Anatomischer Anzeiger, 154(2), 133–144.PubMedGoogle Scholar
  12. 12.
    Zawadzki, M., Pietrasik, A., Pietrasik, K., Marchel, M., & Ciszek, B. (2004). Endoscopic study of the morphology of Vieussens valve. Clinical Anatomy, 17(4), 318–321.PubMedCrossRefGoogle Scholar
  13. 13.
    Daubert, J. C., Cazeau, S., & Leclercq, C. (1999). Do we have reasons to be enthusiastic about pacing to treat advanced heart failure? European Journal of Heart Failure, 1(3), 281–287.PubMedCrossRefGoogle Scholar
  14. 14.
    Hansky, B., Vogt, J., Gueldner, H., Lamp, B., Tenderich, G., Krater, L., et al. (2002). Left heart pacing—Experience with several types of coronary vein leads. Journal of Interventional Cardiac Electrophysiology, 6(1), 71–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Singh, J. P., Houser, S., Heist, E. K., & Ruskin, J. N. (2005). The coronary venous anatomy: A segmental approach to aid cardiac resynchronization therapy. Journal of the American College of Cardiology, 46(1), 68–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Vogt, J., Heintze, J., Hansky, B., Guldner, H., Buschler, H., & Horstkotte, D. (2004). Implantation: Tips and tricks—The cardiologist’s view. European Heart Journal, Supplement, 6(D), D47–D52.CrossRefGoogle Scholar
  17. 17.
    Gilard, M., Mansourati, J., Etienne, Y., Larlet, J. M., Truong, B., Boschat, J., et al. (1998). Angiographic anatomy of the coronary sinus and its tributaries. Pacing and Clinical Electrophysiology, 21(11 Pt 2), 2280–2284.PubMedCrossRefGoogle Scholar
  18. 18.
    Ortale, J. R., Gabriel, E. A., Iost, C., & Marquez, C. Q. (2001). The anatomy of the coronary sinus and its tributaries. Surgical and Radiologic Anatomy, 23(1), 15–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Albertsen, A. E., Nielsen, J. C., Pedersen, A. K., Hansen, P. S., Jensen, H. K., & Mortensen, P. T. (2005). Left ventricular lead performance in cardiac resynchronization therapy: Impact of lead localization and complications. Pacing and Clinical Electrophysiology, 28(6), 483–488.PubMedCrossRefGoogle Scholar
  20. 20.
    Alonso, C., Leclercq, C., d’Allonnes, F. R., Pavin, D., Victor, R., Mabo, P., et al. (2001). Six year experience of transvenous left ventricular lead implantation for permanent biventricular pacing in patients with advanced heart failure: Technical aspects. Heart, 86(4), 405–410.PubMedCrossRefGoogle Scholar
  21. 21.
    Auricchio, A., Klein, H., Tockman, B., Sack, S., Stellbrink, C., Neuzner, J., et al. (1999). Transvenous biventricular pacing for heart failure: Can the obstacles be overcome? American Journal of Cardiology, 83(5B), 136D–142D.PubMedCrossRefGoogle Scholar
  22. 22.
    Barold, S. S. (2001). What is cardiac resynchronization therapy? American Journal of Medicine, 111(3), 224–232.PubMedCrossRefGoogle Scholar
  23. 23.
    Ellery, S. M., & Paul, V. E. (2004). Complications of biventricular pacing. European Heart Journal Supplement, 6(D), D117–D121.CrossRefGoogle Scholar
  24. 24.
    Lau, C. P., Yu, C. M., Chau, E., Fan, K., Tse, H. F., Lee, K., et al. (2000). Reversal of left ventricular remodeling by synchronous biventricular pacing in heart failure. Pacing and Clinical Electrophysiology, 23(11 Pt 2), 1722–1725.PubMedGoogle Scholar
  25. 25.
    Macias, A., Gavira, J. J., Alegria, E., Azcarate, P. M., Barba, J., & Garcia-Bolao, I. (2004). Effect of the left ventricular pacing site on echocardiographic parameters of ventricular dyssynchrony in patients receiving cardiac resynchronization therapy. Revista Espanola de Cardiologia, 57(2), 138–145.PubMedCrossRefGoogle Scholar
  26. 26.
    Pappone, C., Rosanio, S., Oreto, G., Tocchi, M., Gulletta, S., Salvati, A., et al. (2000). Cardiac pacing in heart failure patients with left bundle branch block: Impact of pacing site for optimizing left ventricular resynchronization. Italian Heart Journal, 1(7), 464–469.PubMedGoogle Scholar
  27. 27.
    Rossillo, A., Verma, A., Saad, E. B., Corrado, A., Gasparini, G., Marrouche, N. F., et al. (2004). Impact of coronary sinus lead position on biventricular pacing: Mortality and echocardiographic evaluation during long-term follow-up. Journal of Cardiovascular Electrophysiology, 15(10), 1120–1125.PubMedCrossRefGoogle Scholar
  28. 28.
    Gerber, T. C., Sheedy, P. F., Bell, M. R., Hayes, D. L., Rumberger, J. A., Behrenbeck, T., et al. (2001). Evaluation of the coronary venous system using electron beam computed tomography. International Journal of Cardiovascular Imaging, 17(1), 65–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Shinbane, J. S., Girsky, M. J., Mao, S., & Budhoff, M. J. (2004). Thebesian valve imaging with electron beam CT angiography: Implications for resynchronization therapy. Pacing and Clinical Electrophysiology, 27(11), 1566–1567.PubMedCrossRefGoogle Scholar
  30. 30.
    Coatrieux, J. L., Hernandez, A. I., Mabo, P., et al. (2005). Transvenous path finding in cardiac resynchronization therapy. Functional Imaging and Modeling of Heart Proceedings, 3504, 236–245.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sara E. Anderson
    • 1
  • Jason L. Quill
    • 1
  • Paul A. Iaizzo
    • 1
    Email author
  1. 1.Departments of Biomedical Engineering and SurgeryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations