New drugs for atrial fibrillation

  • Matthias Hammwöhner
  • Jan Smid
  • Uwe Lendeckel
  • Andreas GoetteEmail author


Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Epidemiologic studies suggest that the number of patients with AF will triple in the next 30 years, and therefore, its impact on medical and economic issues will further increase. Due to the limited efficacy and significant side effects of antiarrhythmic drugs, much effort has been made to develop alternative pharmacologic treatments for AF. Novel approaches include new antiarrhythmic drugs and novel drug targets involved in molecular, proarrhythmogenic, atrial remodeling. Furthermore, novel anticoagulants are now clinically studied. This review briefly summarizes new developments in the pharmacotherapy for AF.


Atrial fibrillation Therapy Drugs Pathophysiology Pharmacology 



This work is supported by the “Bundesministerium für Bildung und Forschung, Germany” (Kompetenznetz Vorhofflimmern, AF NET = the German Network of Competence in Atrial Fibrillation; Grant 01GI0204). Illustrations contain elements provided courtesy of Servier Medical Art.


  1. 1.
    Fuster, V., Ryden, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., et al. (2006). ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): Developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation, 114, e257–e354.PubMedCrossRefGoogle Scholar
  2. 2.
    Kannel, W. B., Abbott, R. D., Savage, D. D., & McNamara, P. M. (1982). Epidemiologic features of chronic atrial fibrillation: The Framingham study. New England Journal of Medicine, 306, 1018–1022.PubMedGoogle Scholar
  3. 3.
    Ravens, U., Wettwer, E., Schotten, U., Wessel, R., & Dobrev, D. (2006). [New antiarrhythmic drugs for therapy of atrial fibrillation: I. Ion channel blockers]. Herzschrittmachertherapie & Elektrophysiologie, 17, 64–72.CrossRefGoogle Scholar
  4. 4.
    Bosch, R. F., & Nattel, S. (2002). Cellular electrophysiology of atrial fibrillation. Cardiovascular Research, 54, 259–269.PubMedCrossRefGoogle Scholar
  5. 5.
    de Haan, S., Greiser, M., Harks, E., Blaauw, Y., van Hunnik, A., Verheule, S., et al. (2006). AVE0118, blocker of the transient outward current (I(to)) and ultrarapid delayed rectifier current (I(Kur)), fully restores atrial contractility after cardioversion of atrial fibrillation in the goat. Circulation, 114, 1234–1242.PubMedCrossRefGoogle Scholar
  6. 6.
    Blaauw, Y., Schotten, U., van, H. A., Neuberger, H. R., & Allessie, M. A. (2007). Cardioversion of persistent atrial fibrillation by a combination of atrial specific and non-specific class III drugs in the goat. Cardiovascular Research, 75, 89–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Lofberg, L., Jacobson, I., & Carlsson, L. (2006). Electrophysiological and antiarrhythmic effects of the novel antiarrhythmic agent AZD7009: A comparison with azimilide and AVE0118 in the acutely dilated right atrium of the rabbit in vitro. Europace, 8, 549–557.PubMedCrossRefGoogle Scholar
  8. 8.
    Goldstein, R. N., Khrestian, C., Carlsson, L., & Waldo, A. L. (2004). Azd7009: A new antiarrhythmic drug with predominant effects on the atria effectively terminates and prevents reinduction of atrial fibrillation and flutter in the sterile pericarditis model. Journal of Cardiovascular Electrophysiology, 15, 1444–1450.PubMedCrossRefGoogle Scholar
  9. 9.
    Gogelein, H., Brendel, J., Steinmeyer, K., Strubing, C., Picard, N., Rampe, D., et al. (2004). Effects of the atrial antiarrhythmic drug AVE0118 on cardiac ion channels. Naunyn-Schmiedeberg’s Archives of Pharmacology, 370, 183–192.PubMedGoogle Scholar
  10. 10.
    Wirth, K. J., Brendel, J., Steinmeyer, K., Linz, D. K., Rutten, H., & Gogelein, H. (2007). In vitro and in vivo effects of the atrial selective antiarrhythmic compound AVE1231. Journal of Cardiovascular Pharmacology, 49, 197–206.PubMedCrossRefGoogle Scholar
  11. 11.
    Roy, D., Rowe, B. H., Stiell, I. G., Coutu, B., Ip, J. H., Phaneuf, D., et al. (2004). A randomized, controlled trial of RSD1235, a novel anti-arrhythmic agent, in the treatment of recent onset atrial fibrillation. Journal of the American College of Cardiology, 44, 2355–2361.PubMedCrossRefGoogle Scholar
  12. 12.
    Touboul, P., Brugada, J., Capucci, A., Crijns, H. J., Edvardsson, N., & Hohnloser, S. H. (2003). Dronedarone for prevention of atrial fibrillation: A dose-ranging study. European Heart Journal, 24, 1481–1487.PubMedCrossRefGoogle Scholar
  13. 13.
    Ausma, J., Wijffels, M., Thone, F., Wouters, L., Allessie, M., & Borgers, M. (1997). Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation, 96, 3157–3163.PubMedGoogle Scholar
  14. 14.
    Frustaci, A., Chimenti, C., Bellocci, F., Morgante, E., Russo, M. A., & Maseri, A. (1997). Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation, 96, 1180–1184.PubMedGoogle Scholar
  15. 15.
    Goette, A., Juenemann, G., Peters, B., Klein, H. U., Roessner, A., Huth, C., et al. (2002). Determinants and consequences of atrial fibrosis in patients undergoing open heart surgery. Cardiovascular Research, 54, 390–396.PubMedCrossRefGoogle Scholar
  16. 16.
    Goette, A., & Lendeckel, U. (2004). Nonchannel drug targets in atrial fibrillation. Pharmacology & Therapeutics, 102, 17–36.CrossRefGoogle Scholar
  17. 17.
    Nattel, S. (2002). New ideas about atrial fibrillation 50 years on. Nature, 415, 219–226.PubMedCrossRefGoogle Scholar
  18. 18.
    Kjolbye, A. L., Knudsen, C. B., Jepsen, T., Larsen, B. D., & Petersen, J. S. (2003). Pharmacological characterization of the new stable antiarrhythmic peptide analog Ac-D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly-NH2 (ZP123): In vivo and in vitro studies. Journal of Pharmacology and Experimental Therapeutics, 306, 1191–1199.PubMedCrossRefGoogle Scholar
  19. 19.
    Aonuma, S., Kohama, Y., Akai, K., Komiyama, Y., Nakajima, S., Wakabayashi, M., et al. (1980). Studies on heart. XIX. Isolation of an atrial peptide that improves the rhythmicity of cultured myocardial cell clusters. Chemical and Pharmaceutical Bulletin (Tokyo), 28, 3332–3339.Google Scholar
  20. 20.
    Eloff, B. C., Gilat, E., Wan, X., & Rosenbaum, D. S. (2003). Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: Evidence supporting a novel target for antiarrhythmic therapy. Circulation, 108, 3157–3163.PubMedCrossRefGoogle Scholar
  21. 21.
    Xing, D., Kjolbye, A. L., Nielsen, M. S., Petersen, J. S., Harlow, K. W., Holstein-Rathlou, N. H., et al. (2003). ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs. Journal of Cardiovascular Electrophysiology, 14, 510–520.PubMedCrossRefGoogle Scholar
  22. 22.
    Shiroshita-Takeshita, A., Sakabe, M., Haugan, K., Hennan, J. K., & Nattel, S. (2007). Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs. Circulation, 115, 310–318.PubMedCrossRefGoogle Scholar
  23. 23.
    Vest, J. A., Wehrens, X. H., Reiken, S. R., Lehnart, S. E., Dobrev, D., Chandra, P., et al. (2005). Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation, 111, 2025–2032.PubMedCrossRefGoogle Scholar
  24. 24.
    Kumagai, K., Nakashima, H., Gondo, N., & Saku, K. (2003). Antiarrhythmic effects of JTV-519, a novel cardioprotective drug, on atrial fibrillation/flutter in a canine sterile pericarditis model. Journal of Cardiovascular Electrophysiology, 14, 880–884.PubMedCrossRefGoogle Scholar
  25. 25.
    Carnes, C. A., Chung, M. K., Nakayama, T., Nakayama, H., Baliga, R. S., Piao, S., et al. (2001). Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circulation Research, 89, E32–E38.PubMedCrossRefGoogle Scholar
  26. 26.
    Dudley Jr., S. C., Hoch, N. E., McCann, L. A., Honeycutt, C., Diamandopoulos, L., Fukai, T., et al. (2005). Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: Role of the NADPH and xanthine oxidases. Circulation, 112, 1266–1273.PubMedCrossRefGoogle Scholar
  27. 27.
    Mihm, M. J., Yu, F., Carnes, C. A., Reiser, P. J., McCarthy, P. M., Van Wagoner, D. R., et al. (2001). Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 104, 174–180.PubMedGoogle Scholar
  28. 28.
    Shiroshita-Takeshita, A., Schram, G., Lavoie, J., & Nattel, S. (2004). Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation, 110, 2313–2319.PubMedCrossRefGoogle Scholar
  29. 29.
    Patti, G., Chello, M., Candura, D., Pasceri, V., D’Ambrosio, A., Covino, E., et al. (2006). Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: Results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. Circulation, 114, 1455–1461.PubMedCrossRefGoogle Scholar
  30. 30.
    Dernellis, J., & Panaretou, M. (2004). Relationship between C-reactive protein concentrations during glucocorticoid therapy and recurrent atrial fibrillation. European Heart Journal, 25, 1100–1107.PubMedCrossRefGoogle Scholar
  31. 31.
    Halonen, J., Halonen, P., Jarvinen, O., Taskinen, P., Auvinen, T., Tarkka, M., et al. (2007). Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: A randomized controlled trial. JAMA, 297, 1562–1567.PubMedCrossRefGoogle Scholar
  32. 32.
    van der Hooft, C. S., Heeringa, J., Brusselle, G. G., Hofman, A., Witteman, J. C., Kingma, J. H., et al. (2006). Corticosteroids and the risk of atrial fibrillation. Archives of Internal Medicine, 166, 1016–1020.PubMedCrossRefGoogle Scholar
  33. 33.
    Goette, A., Staack, T., Rocken, C., Arndt, M., Geller, J. C., Huth, C., et al. (2000). Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. Journal of the American College of Cardiology, 35, 1669–1677.PubMedCrossRefGoogle Scholar
  34. 34.
    Goette, A., Arndt, M., Rocken, C., Spiess, A., Staack, T., Geller, J. C., et al. (2000). Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation, 101, 2678–2681.PubMedGoogle Scholar
  35. 35.
    Li, D., Fareh, S., Leung, T. K., & Nattel, S. (1999). Promotion of atrial fibrillation by heart failure in dogs: Atrial remodeling of a different sort. Circulation, 100, 87–95.PubMedGoogle Scholar
  36. 36.
    Kumagai, K., Nakashima, H., Urata, H., Gondo, N., Arakawa, K., & Saku, K. (2003). Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. Journal of the American College of Cardiology, 41, 2197–2204.PubMedCrossRefGoogle Scholar
  37. 37.
    Goette, A., Hoffmanns, P., Enayati, W., Meltendorf, U., Geller, J. C., & Klein, H. U. (2001). Effect of successful electrical cardioversion on serum aldosterone in patients with persistent atrial fibrillation. American Journal of Cardiology, 88, 906–909 A8.PubMedCrossRefGoogle Scholar
  38. 38.
    Zannad, F., Alla, F., Dousset, B., Perez, A., & Pitt, B. (2000). Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: Insights from the randomized aldactone evaluation study (RALES). Rales investigators. Circulation, 102, 2700–2706.PubMedGoogle Scholar
  39. 39.
    Goette, A., Bukowska, A., Lendeckel, U., Erxleben, M., Hammwohner, M., Strugala, D., et al. (2008). Angiotensin II receptor blockade reduces tachycardia-induced atrial adhesion molecule expression. Circulation, 117, 732–742.PubMedCrossRefGoogle Scholar
  40. 40.
    Hammwöhner, M., Ittenson, A., Dierkes, J., Bukowska, A., Klein, H. U., Lendeckel, U., et al. (2007). Platelet expression of CD40/CD40 ligand and its relation to inflammatory markers and adhesion molecules in patients with atrial fibrillation. Experimental Biology and Medicine (Maywood, N.J.), 232, 581–589.Google Scholar
  41. 41.
    Eriksson, B. I., & Quinlan, D. J. (2006). Oral anticoagulants in development: Focus on thromboprophylaxis in patients undergoing orthopaedic surgery. Drugs, 66, 1411–1429.PubMedCrossRefGoogle Scholar
  42. 42.
    Weitz, J. I., & Bates, S. M. (2005). New anticoagulants. Journal of Thrombosis and Haemostasis, 3, 1843–1853.PubMedCrossRefGoogle Scholar
  43. 43.
    Hammwöhner, M., D’Alessandro, A., Wolfram, O., & Goette, A. (2007). New pharmacologic approaches to prevent thromboembolism in patients with atrial fibrillation. Current Vascular Pharmacology, 5, 211–219.PubMedCrossRefGoogle Scholar
  44. 44.
    Hammwöhner, M., D’Alessandro, A., Dobrev, D., Kirchhof, P., & Goette, A. (2006). [New antiarrhythmic drugs for therapy of atrial fibrillation: II. Non-ion channel blockers]. Herzschrittmachertherapie & Elektrophysiologie, 17, 73–80.CrossRefGoogle Scholar
  45. 45.
    Goette, A., Bukowska, A., & Lendeckel, U. (2007). Non-ion channel blockers as anti-arrhythmic drugs (reversal of structural remodeling). Current Opinion in Pharmacology, 7, 219–224.PubMedCrossRefGoogle Scholar
  46. 46.
    Monroe, D. M., Hoffman, M., & Roberts, H. R. (2002). Platelets and thrombin generation. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1381–1389.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Matthias Hammwöhner
    • 1
  • Jan Smid
    • 1
  • Uwe Lendeckel
    • 2
  • Andreas Goette
    • 1
    Email author
  1. 1.Division of CardiologyUniversity Hospital MagdeburgMagdeburgGermany
  2. 2.Institute of Experimental Internal MedicineUniversity Hospital MagdeburgMagdeburgGermany

Personalised recommendations