Clinical outcome of left atrial ablation for paroxysmal atrial fibrillation is related to the extent of radiofrequency ablation

  • Demosthenes Katritsis
  • Kenneth A. Ellenbogen
  • Eleftherios Giazitzoglou
  • Dimitrios Sougiannis
  • George Paxinos
  • Nicolaos Fragakis
  • A. John Camm
Article

Abstract

Background

The exact mechanism of eliminating atrial fibrillation (AF) by catheter ablation techniques is not known. We investigated whether the extent of atrial damage conferred by radiofrequency lesions is a predictor of success after ablation, regardless of the method employed for ablation.

Methods

Ninety consecutive patients with paroxysmal AF subjected to ostial–antral pulmonary vein isolation (n = 41) or circumferential (n = 49) catheter ablation were studied.

Results

At 1 year follow-up, 16 out of 41 patients (39%) with ostial–antral ablation and 16 out of 49 patients (32.6%) with circumferential ablation had AF recurrences (p = 0.5). The mean duration of radiofrequency ablation lesions was statistically significantly shorter in patients with recurrence of AF compared to those with sinus rhythm 1 year after ablation (22.3 ± 4.2 min vs. 27.2 ± 4.5 min, respectively, p value < 0.001). Radiofrequency ablation time was inversely associated with the risk of recurrence of AF 1 year after ablation and this relationship remained even after adjustment for potential confounding factors such as age, sex, left atrial size, and type of ablation technique (ostial–antral or circumferential; HR  =  0.80, 95% CI: 0.72–0.87, p < 0.001).

Conclusions

Duration of radiofrequency energy delivery is an independent predictor of clinical outcome at 1 year follow-up both among patients undergoing circumferential as well as ostial–antral ablation.

Keywords

Atrial fibrillation Ablation Circumferential Ostial Antral 

References

  1. 1.
    Ouyang, F., Antz, M., Ernst, S., et al. (2005). Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the pulmonary veins: lessons from double Lasso technique. Circulation, 111, 127–135.PubMedCrossRefGoogle Scholar
  2. 2.
    Cappato, R., Negroni, S., Pecora, D., Bentivegna, S., Lupo, P. P., Carolei, A., et al. (2003). Prospective assessment of late conduction recurrence across radiofrequency lesions producing electrical disconnection at the pulmonary vein ostium in patients with atrial fibrillation. Circulation, 108, 1599–604.PubMedCrossRefGoogle Scholar
  3. 3.
    Hocini, M., Sanders, P., Jais, P., Hsu, L. F., Weerasoriya, R., Scavee, C., et al. (2005). Prevalence of pulmonary vein disconnection after anatomical ablation for atrial fibrillation: consequences of wide atrial encircling of the pulmonary veins. European Heart Journal, 26, 696–704.PubMedCrossRefGoogle Scholar
  4. 4.
    Stabile, G., Turco, P., La Rocca, V., Nocerino, P., Stabile, E., & De Simone, A. (2003). Is pulmonary vein isolation necessary for curing atrial fibrillation? Circulation, 108, 657–660.PubMedCrossRefGoogle Scholar
  5. 5.
    Katritsis, D., Ellenbogen, K. A., & Camm, A. J. (2004). Recurrence of pulmonary vein-left atrium conduction following successful disconnection in asymptomatic patients. Europace, 6, 425–432.PubMedCrossRefGoogle Scholar
  6. 6.
    Lemola, K., Oral, H., Chugh, A., et al. (2005). Pulmonary vein isolation as an end point for left atrial circumferential ablation of atrial fibrillation. Journal of the American College of Cardiology, 46, 1060–1066.PubMedCrossRefGoogle Scholar
  7. 7.
    van Brakel, T. J., Bolotin, G., Nifong, L. W., Dekker, A. L., Allessie, M. A., Chitwood Jr, W. R., et al. (2005). Robot-assisted epicardial ablation of the pulmonary veins: is a completed isolation necessary? European Heart Journal, 26, 1321–1326.PubMedCrossRefGoogle Scholar
  8. 8.
    Lemola, K., Hall, B., Cheung, P., Good, E., Han, J., Tamirisa, K., et al. (2004). Mechanisms of recurrent atrial fibrillation after pulmonary vein isolation by segmental ostial ablation. Heart Rhythm, 1, 197–202.PubMedCrossRefGoogle Scholar
  9. 9.
    Oral, H., Chugh, A., Good, E., Igic, P., Elmouchi, D., Tschopp, D. R., et al. (2005). Randomized comparison of encircling and nonencircling left atrial ablation for chronic atrial fibrillation. Heart Rhythm, 2, 1165–1172.PubMedCrossRefGoogle Scholar
  10. 10.
    Oral, H., Chugh, A., Good, E., Sankaran, S., Reich, S. S., Igic, P., et al. (2006). A tailored approach to catheter ablation of paroxysmal atrial fibrillation. Circulation, 113, 1824–1831.PubMedCrossRefGoogle Scholar
  11. 11.
    Essebag, V., Baldessin, F., Reynolds, M. R., McClennen, S., Shah, J., Kwaku, K. F., et al. (2005). Non-inducibility post-pulmonary vein isolation achieving exit block predicts freedom from atrial fibrillation. European Heart Journal, 26, 2550–2555.PubMedCrossRefGoogle Scholar
  12. 12.
    Katritsis, D., Giazitzoglou, E., Korovesis, S., Kourlaba, G., Voridis, E., & Camm, A. J. (2007). Staged circumferential and ostial pulmonary vein ablation for the treatment of paroxysmal atrial fibrillation. PACE, 30, 102–108.PubMedGoogle Scholar
  13. 13.
    Oral, H., Chugh, A., Lemola, K., Cheung, P., Hall, B., Good, E., et al. (2004). Noninducibility of atrial fibrillation as an end point of left atrial circumferential ablation for paroxysmal atrial fibrillation: a randomized study. Circulation, 110, 2797–2801.PubMedCrossRefGoogle Scholar
  14. 14.
    Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., et al. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43, 2044–2053.PubMedCrossRefGoogle Scholar
  15. 15.
    Lemola, K., Ting, M., Gupta, P., Anker, J. N., Chugh, A., Good, E., et al. (2006). Effects of two different catheter ablation techniques on spectral characteristics of atrial fibrillation. Journal of the American College Cardiology, 48, 340–348.CrossRefGoogle Scholar
  16. 16.
    Pappone, C., Oreto, G., Rosanio, S., Vicedomini, G., Tocchi, M., Gugliotta, F., et al. (2001). Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation, 104, 2539–2544.PubMedCrossRefGoogle Scholar
  17. 17.
    Katritsis, D. G., Ellenbogen, K. A., Panagiotakos, D. B., Giazitzoglou, E., Karabinos, I., Papadopoulos, A., et al. (2004). Ablation of superior pulmonary veins compared to ablation of all four pulmonary veins: A randomized clinical trial. Journal of Cardiovascular Electrophysiology, 15, 641–645.PubMedCrossRefGoogle Scholar
  18. 18.
    Katritsis, D. G., Wood, M. A., Shepard, R. K., Giazitzoglou, E., Kourlaba, G., & Ellenbogen, K. A. (2006). Atrial arrhythmias following ostial or circumferential pulmonary vein ablation. Journal of Interventional Cardiac Electrophysiology, 16, 123–130.PubMedCrossRefGoogle Scholar
  19. 19.
    Allessie, M. A., Boyden, P. A., Camm, A. J., Kleber, A. G., Lab, M. J., Legato, M. J., et al. (2001). Pathophysiology and prevention of atrial fibrillation. Circulation, 103, 769–777.PubMedGoogle Scholar
  20. 20.
    Katritsis, D. G., & Camm, A. J. (2007). Catheter ablation of atrial fibrillation. Do we know what we are doing? Europace, 9, 1002–1005.PubMedCrossRefGoogle Scholar
  21. 21.
    Kumagai, K., Ogawa, M., Noguchi, H., Yasuda, T., Nakashima, H., & Saku, K. (2004). Electrophysiologic properties of pulmonary veins assessed using a multielectrode basket catheter. Journal of the American College of Cardiology, 43, 2281–2289.PubMedCrossRefGoogle Scholar
  22. 22.
    Kalifa, J., Tanaka, K., Zaitsev, A. V., Warren, M., Vaidyanathan, R., Auerbach, D., et al. (2006). Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation, 113, 626–633.PubMedCrossRefGoogle Scholar
  23. 23.
    Katritsis, D., Giazitzoglou, E., Korovesis, S., Paxinos, G., Anagnostopoulos, C. E., & Camm, A. J. (2002). Epicardial foci of atrial arrhythmias apparently originating in the left pulmonary veins. Journal of Cardiovascular Electrophysiology, 13, 319–323.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu, L., & Nattel, S. (1997). Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. American Journal of Physiology, 273(2 Pt 2), H805–H816.PubMedGoogle Scholar
  25. 25.
    Allessie, M. A., Bonke, F. I., & Schopman, F. J. (1977). Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circulation Research, 41, 9–18.PubMedGoogle Scholar
  26. 26.
    Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., & Jalife, J. (2000). Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation, 101, 194–199.PubMedGoogle Scholar
  27. 27.
    Pachon, M. J. C., Pachon, M. E. I., Pachon, M. J. C., Lobo, T. J., Pachon, M. Z., Vargas, R. N., et al. (2004). A new treatment for atrial fibrillation based on spectral analysis to guide the catheter RF-ablation. Europace, 6, 590–601.PubMedCrossRefGoogle Scholar
  28. 28.
    Pratola, C., Baldo, E., Notarstefano, P., Toselli, T., & Ferrari, R. (2008). Radiofrequency ablation of atrial fibrillation: is the persistence of all intraprocedural targets necessary for long-term maintenance of sinus rhythm? Circulation, 117, 136–143.PubMedCrossRefGoogle Scholar
  29. 29.
    Lemola, K., Desjardins, B., Sneider, M., Case, I., Chugh, A., Good, E., et al. (2005). Effect of left atrial circumferential ablation for atrial fibrillation on left atrial transport function. Heart Rhythm, 2, 923–928.PubMedCrossRefGoogle Scholar
  30. 30.
    Verma, A., Kilicaslan, F., Adams, J. R., Hao, S., Beheiry, S., Minor, S., et al. (2006). Extensive ablation during pulmonary vein antrum isolation has no adverse impact on left atrial function: an echocardiography and cine computed tomography analysis. Journal of Cardiovascular Electrophysiology, 17, 741–746.PubMedCrossRefGoogle Scholar
  31. 31.
    Lo, L. W., Tai, C. T., Lin, Y. J., Chang, S. L., Wongcharoen, W., Chang, S. H., et al. (2007). Progressive remodeling of the atrial substrate—A novel finding from consecutive voltage mapping in patients with recurrence of atrial fibrillation after catheter ablation. Journal of Cardiovascular Electrophysiology, 18, 258–265.PubMedCrossRefGoogle Scholar
  32. 32.
    Kostin, S., Klein, G., Szalay, Z., Hein, S., Bauer, E. P., & Schaper, J. (2002). Structural correlate of atrial fibrillation in human patients. Cardiovascular Research, 54, 361–379.PubMedCrossRefGoogle Scholar
  33. 33.
    Hindricks, G., Piorkowski, C., Tanner, H., Kobza, R., Gerds-Li, J. H., Carbucicchio, C., et al. (2005). Perception of atrial fibrillation before and after radiofrequency catheter ablation: relevance of asymptomatic arrhythmia recurrence. Circulation, 112, 307–313.PubMedCrossRefGoogle Scholar
  34. 34.
    Neumann, T., Erdogan, A., Dill, T., Greiss, H., Berkowitsch, A., Sperzel, J., et al. (2006). Asymptomatic recurrences of atrial fibrillation after pulmonary vein isolation. Europace, 8, 495–498.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Demosthenes Katritsis
    • 1
  • Kenneth A. Ellenbogen
    • 2
  • Eleftherios Giazitzoglou
    • 1
  • Dimitrios Sougiannis
    • 1
  • George Paxinos
    • 1
  • Nicolaos Fragakis
    • 1
  • A. John Camm
    • 3
  1. 1.Department of CardiologyAthens EuroclinicAthensGreece
  2. 2.Division of CardiologyMedical College of VirginiaRichmondUSA
  3. 3.Cardiac and Vascular SciencesSt George’s, University of LondonLondonUK

Personalised recommendations