New concepts in understanding and modulating atrial repolarisation in patients with atrial fibrillation

  • Dobromir Dobrev


Atrial fibrillation is the most frequent cardiac arrhythmia in clinical practice. Although much has been learned, the underlying mechanisms are incompletely understood. Clinically used antiarrhythmic drugs are limited in their efficacy to terminate atrial fibrillation or to maintain sinus rhythm and were associated with substantial toxicity including life-threatening ventricular arrhythmias. Novel therapeutic approaches suggest targeting of atrium-selective ion channels and pathology-specific alterations in atrial repolarisation and arrhythmogenesis as promising drug targets for patients with atrial fibrillation. This article focuses on novel aspects of altered atrial repolarisation and discusses atrium-selective (IKur, IK,ACh) and pathology-specific (IK,ACh) ion channels as potential targets for safe and effective treatment of atrial fibrillation.


Atrial fibrillation Remodeling Atrium-selective targets IKur IK,ACh 



The author’s research is supported by the German Federal Ministry of Education and Research (BMBF) through the Atrial Fibrillation Competence NETwork (AFNET, grant 01Gi0204) and by a grant of Fondation Leducq.


  1. 1.
    Wijffels, M. C., Kirchhof, C. J., Dorland, R., Power, J., & Allessie, M. A. (1997). Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: Roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation, 96, 3710–3720.PubMedGoogle Scholar
  2. 2.
    Dobrev, D., & Ravens, U. (2003). Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Research in Cardiology, 98, 137–148.PubMedGoogle Scholar
  3. 3.
    Dobrev, D., Friedrich, A., Voigt, N., Jost, N., Wettwer, E., Christ, T., et al. (2005). The G-protein gated potassium current IK,ACh is constitutively active in patients with chronic atrial fibrillation. Circulation, 112, 3697–3706.PubMedCrossRefGoogle Scholar
  4. 4.
    Nattel, S. (2002). New ideas about atrial fibrillation 50 years on. Nature, 415, 219–226.PubMedCrossRefGoogle Scholar
  5. 5.
    Riley, M. J., & Marrouche, N. F. (2006). Ablation of atrial fibrillation. Current Problems in Cardiology, 31, 361–390.PubMedCrossRefGoogle Scholar
  6. 6.
    Ehrlich, J. R., Nattel, S., & Hohnloser, S. H. (2007). Novel anti-arrhythmic drugs for atrial fibrillation management. Current Vascular Pharmacology, 5, 185–195.PubMedCrossRefGoogle Scholar
  7. 7.
    Van Wagoner, D. R., Pond, A. L., McCarthy, P. M., Trimmer, J. S., & Nerbonne, J. (1997). Outward K current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circulation Research, 80, 772–781.PubMedGoogle Scholar
  8. 8.
    Brundel, B. J. J. M., Van Gelder, I. C., Henning, R. H., Tieleman, R. G., Tuinenburg, A. E., Wietses, M., et al. (2001). Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation, 103, 684–690.PubMedGoogle Scholar
  9. 9.
    Wettwer, E., Hála, O., Christ, T., Heubach, J. F., Dobrev, D., Knaut, M., et al. (2004). Role of IKur in controlling action potential shape and contractility in the human atrium: Influence of chronic atrial fibrillation. Circulation, 110, 2299–2306.PubMedCrossRefGoogle Scholar
  10. 10.
    Brundel, B. J., Ausma, J., Van Gelder, I. C., Van der Want, J. J., Van Gilst, W. H., Crijns, H. J., et al. (2002). Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovascular Research, 54, 380–389.PubMedCrossRefGoogle Scholar
  11. 11.
    Tessier, S., Karczewski, P., Krause, E. G., Pansard, Y., Acar, C., Lang-Lazdunski, M., et al. (1999). Regulation of the transient outward K+ current by Ca2+/calmodulin-dependent protein kinases II in human atrial myocytes. Circulation Research, 85, 810–819.PubMedGoogle Scholar
  12. 12.
    Christ, T., Boknik, P., Wöhrl, S., Wettwer, E., Graf, E. M., Bosch, R. F., et al. (2004). Reduced L-type Ca2+ current density in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation, 110, 2651–2657.PubMedCrossRefGoogle Scholar
  13. 13.
    El-Armouche, A., Boknik, P., Eschenhagen, T., Carrier, L., Knaut, M., Ravens, U., et al. (2006). Molecular determinants of altered Ca2+-handling in human chronic atrial fibrillation. Circulation, 114, 670–680.PubMedCrossRefGoogle Scholar
  14. 14.
    Kovoor, P., Wickman, K., Maguire, C. T., Pu, W., Gehrmann, J., Berul, C. I., et al. (2001). Evaluation of the role of IK,ACh in atrial fibrillation using a mouse knockout model. Journal of the American College of Cardiology, 37, 2136–2143.PubMedCrossRefGoogle Scholar
  15. 15.
    Dobrev, D., Graf, E., Wettwer, E., Himmel, H. M., Hála, O., Doerfel, C., et al. (2001). Molecular basis of down-regulation of G-protein-coupled inward rectifying K current (IK,ACh) in chronic human atrial fibrillation. Decrease in GIRK4 mRNA correlates with reduced IK,ACh and muscarinic receptor-mediated shortening of action potentials. Circulation, 104, 2551–2557.PubMedCrossRefGoogle Scholar
  16. 16.
    Voigt, N., Friedrich, A., Bock, M., Wettwer, E., Christ, T., Knaut, M., et al. (2007). Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK,ACh channels in patients with chronic atrial fibrillation. Cardiovascular Research, 74, 426–437.PubMedCrossRefGoogle Scholar
  17. 17.
    Ehrlich, J. R., Cha, T. J., Zhang, L., Chartier, D., Villeneuve, L., Hébert, T. E., et al. (2004). Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary veins myocardial sleeves and left atrium. Journal of Physiology(London), 557, 583–597.CrossRefGoogle Scholar
  18. 18.
    Voigt, N., Maguy, A., Yeh, Y. H., Qi, X., Ravens, U., Dobrev, D., et al. (2008). Changes in IK,ACh single channel activity with atrial tachycardia remodeling in canine atrial cardiomyocytes. Cardiovascular Research, 77, 35–43.Google Scholar
  19. 19.
    Nikolov, E. N., & Ivanova-Nikolova, T. T. (2004). Coordination of membrane excitability through a GIRK1 signaling complex in the atria. Journal of Biological Chemistry, 279, 23630–23636.PubMedCrossRefGoogle Scholar
  20. 20.
    Patton, K. K., & Page, R. L. (2007). Pharmacological therapy of atrial fibrillation. Expert Opinion on Investigational Drugs, 16, 169–179.PubMedCrossRefGoogle Scholar
  21. 21.
    Blaauw, Y., Schotten, U., van Hunnik, A., Neuberger, H. R., & Allessie, M. A. (2007). Cardioversion of persistent atrial fibrillation by a combination of atrial specific and non-specific class III drugs in the goat. Cardiovascular Research, 75, 89–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Pandit, S. V., Berenfeld, O., Anumonwo, J. M., Zaritski, R. M., Kneller, J., Nattel, S., et al. (2005). Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophysical Journal, 88, 3806–3821.PubMedCrossRefGoogle Scholar
  23. 23.
    Cha, T. J., Ehrlich, J. R., Chartier, D., Qi, X. Y., Xiao, L., & Nattel, S. (2006). Kir3-based inward rectifier potassium current: Potential role in atrial tachycardia remodeling effects on atrial repolarization and arrhythmias. Circulation, 113, 1730–1737.PubMedCrossRefGoogle Scholar
  24. 24.
    Gogelein, H., Brendel, J., Steinmeyer, K., Strübing, C., Picard, N., Rampe, D., et al. (2004). Effects of the atrial antiarrhythmic drug AVE0118 on cardiac ion channels. Naunyn-Schmiedeberg’s Archives of Pharmacology, 370, 183–192.PubMedGoogle Scholar
  25. 25.
    Inomata, N., Ishihara, T., & Akaike, N. (1991). Mechanisms of the anticholinergic effect of SUN 1165 in comparison with flecainide, disopyramide and quinidine in single atrial myocytes isolated from guinea-pig. British Journal of Pharmacology, 104, 1007–1111.PubMedGoogle Scholar
  26. 26.
    Watanabe, Y., Hara, Y., Tamagawa, M., & Nakaya, H. (1996). Inhibitory effect of amiodarone on the muscarinic acetylcholine receptor-operated potassium current in guinea pig atrial cells. Journal of Pharmacology and Experimental Therapeutics, 279, 617–624.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyDresden University of TechnologyDresdenGermany

Personalised recommendations