Advertisement

Factors affecting error in integration of electroanatomic mapping with CT and MR imaging during catheter ablation of atrial fibrillation

  • E. Kevin Heist
  • Jianping Chevalier
  • Godtfred Holmvang
  • Jagmeet P. Singh
  • Patrick T. Ellinor
  • David J. Milan
  • Andre D’Avila
  • Theofanie Mela
  • Jeremy N. Ruskin
  • Moussa Mansour
Article

Abstract

Objective

Integration of 3-D electroanatomic mapping with Computed Tomographic (CT) and Magnetic Resonance (MR) imaging is gaining acceptance to facilitate catheter ablation of atrial fibrillation. This is critically dependent on accurate integration of electroanatomic maps with CT or MR images. We sought to examine the effect of patient- and technique-related factors on integration accuracy of electroanatomic mapping with CT and MR imaging of the left atrium.

Materials and methods

Sixty-one patients undergoing catheter-based atrial fibrillation (AF) ablation procedures were included. All patients underwent cardiac CT (n = 11) or MR (n = 50) imaging, and image integration with real-time electroanatomic mapping of the aorta and left atrium (LA). CARTO-Merge software (Biosense-Webster) was used to calculate the overall average accuracy of integration of electroanatomic points with the CT and MR-derived reconstructions of the LA and aorta.

Results

There was a significant correlation between LA size assessed by electroanatomic mapping (112 ± 31 ml) and average integration error (1.9 ± 0.6 mm) (r = 0.46, p = 0.0003). There was also greater integration error for patients with LA volume ≥ 110 ml (n = 31) versus < 110 ml (n = 30) (p = 0.004). In contrast, there was no significant association between average integration error and paroxysmal versus persistent AF, left ventricular ejection fraction, days from imaging to electroanatomic mapping, or images derived from CT versus MR.

Conclusions

Patients with larger LA volume may be prone to greater error during integration of electroanatomic mapping with CT and MR imaging. Strategies to reduce integration error may therefore be especially useful in patients with large LA volume.

Keywords

Atrial fibrillation Catheter ablation Image integration Electroanatomic mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pappone, C., Oreto, G., Lamberti, F., Vicedomini, G., Loricchio, M. L., Shpun, S., et al. (1999). Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation, 100, 1203–1208.PubMedGoogle Scholar
  2. 2.
    Pappone, C., Rosanio, S., Oreto, G., Tocchi, M., Gugliotta, F., Vicedomini, G., et al. (2000). Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. Circulation, 102, 2619–2628.PubMedGoogle Scholar
  3. 3.
    Mansour, M., Ruskin, J., & Keane, D. (2004). Efficacy and safety of segmental ostial versus circumferential extra-ostial pulmonary vein isolation for atrial fibrillation. Journal of Cardiovascular Electrophysiology, 15, 532–537.PubMedCrossRefGoogle Scholar
  4. 4.
    Reddy, V. Y., Malchano, Z. J., Holmvang, G., Schmidt, E. J., D’Avila, A., Houghtaling, C., et al. (2004). Integration of cardiac magnetic resonance imaging with three-dimensional electroanatomic mapping to guide left ventricular catheter manipulation: Feasibility in a porcine model of healed myocardial infarction. Journal of the American College of Cardiology, 44, 2202–2213.PubMedCrossRefGoogle Scholar
  5. 5.
    Verma, A., Marrouche, N., & Natale, A. (2004). Novel method to integrate three-dimensional computed tomographic images of the left atrium with real-time electroanatomic mapping. Journal of Cardiovascular Electrophysiology, 15, 968.PubMedCrossRefGoogle Scholar
  6. 6.
    Dong, J., Calkins, H., Solomon, S. B., Lai, S., Dalal, D., Lardo, A., et al. (2006). Integrated electroanatomic mapping with three-dimensional computed tomographic images for real-time guided ablations. Circulation, 113, 186–194.PubMedCrossRefGoogle Scholar
  7. 7.
    Mikaelian, B. J., Malchano, Z. J., Neuzil, P., Weichet, J., Doshi, S. K., Ruskin, J. N., et al. (2005). Images in cardiovascular medicine. Integration of 3-dimensional cardiac computed tomography images with real-time electroanatomic mapping to guide catheter ablation of atrial fibrillation. Circulation, 112, e35–e36.PubMedCrossRefGoogle Scholar
  8. 8.
    Tops, L. F., Bax, J. J., Zeppenfeld, K., Jongbloed, M. R., Lamb, H. J., van der Wall, E. E., et al. (2005). Fusion of multislice computed tomography imaging with three-dimensional electroanatomic mapping to guide radiofrequency catheter ablation procedures. Heart Rhythm, 2, 1076–1081.PubMedCrossRefGoogle Scholar
  9. 9.
    Noseworthy, P. A., Malchano, Z. J., Ahmed, J., Holmvang, G., Ruskin, J. N., & Reddy, V. Y. (2005). The impact of respiration on left atrial and pulmonary venous anatomy: Implications for image-guided intervention. Heart Rhythm, 2, 1173–1178.PubMedCrossRefGoogle Scholar
  10. 10.
    Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., et al. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New England Journal of Medicine, 339, 659–666.PubMedCrossRefGoogle Scholar
  11. 11.
    Oral, H., Scharf, C., Chugh, A., Hall, B., Cheung, P., Good, E., et al. (2003). Catheter ablation for paroxysmal atrial fibrillation: Segmental pulmonary vein ostial ablation versus left atrial ablation. Circulation, 108, 2355–2360.PubMedCrossRefGoogle Scholar
  12. 12.
    Mansour, M., Holmvang, G., Sosnovik, D., Migrino, R., Abbara, S., Ruskin, J., et al. (2004). Assessment of pulmonary vein anatomic variability by magnetic resonance imaging: Implications for catheter ablation techniques for atrial fibrillation. Journal of Cardiovascular Electrophysiology, 15, 387–393.PubMedCrossRefGoogle Scholar
  13. 13.
    Mansour, M., Refaat, M., Heist, E. K., Mela, T., Cury, R., Holmvang, G., et al. (2006). Three-dimensional anatomy of the left atrium by magnetic resonance angiography: Implications for catheter ablation for atrial fibrillation. Journal of Cardiovascular Electrophysiology, 17, 719–723.PubMedCrossRefGoogle Scholar
  14. 14.
    Pürerfellner, H., & Martinek, M. (2005). Pulmonary vein stenosis following catheter ablation of atrial fibrillation. Current Opinion in Cardiology, 20, 484–490.PubMedCrossRefGoogle Scholar
  15. 15.
    Kistler, P. M., Earley, M. J., Harris, S., Abrams, D., Ellis, S., Sporton, S. C., et al. (2006). Validation of three-dimensional cardiac image integration: Use of integrated CT image into electroanatomic mapping system to perform catheter ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 17, 341–348.PubMedCrossRefGoogle Scholar
  16. 16.
    Ernst, S., Ouyang, F., Linder, C., Hertting, K., Stahl, F., Chun, J., et al. (2004). Initial experience with remote catheter ablation using a novel magnetic navigation system: Magnetic remote catheter ablation. Circulation, 109, 1472–1475.PubMedCrossRefGoogle Scholar
  17. 17.
    Pappone, C., Vicedomini, G., Manguso, F., Gugliotta, F., Mazzone, P., Gulletta, S., et al. (2006). Robotic magnetic navigation for atrial fibrillation ablation. Journal of the American College of Cardiology, 47, 1390–1400.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • E. Kevin Heist
    • 1
  • Jianping Chevalier
    • 1
  • Godtfred Holmvang
    • 2
  • Jagmeet P. Singh
    • 1
  • Patrick T. Ellinor
    • 1
  • David J. Milan
    • 1
  • Andre D’Avila
    • 1
  • Theofanie Mela
    • 1
  • Jeremy N. Ruskin
    • 1
  • Moussa Mansour
    • 1
  1. 1.Cardiac Arrhythmia Service and Cardiac UnitMassachusetts General HospitalBostonUSA
  2. 2.Cardiology Division, Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations