Predictors of early recurrence and delayed cure after segmental pulmonary vein isolation for paroxysmal atrial fibrillation without structural heart disease

  • Hong JiangEmail author
  • Zhibing Lu
  • Handong Lei
  • Dongdong Zhao
  • Bo Yang
  • Congxin Huang



Early recurrence of atrial fibrillation (ERAF) and delayed cure are commonly observed after atrial fibrillation (AF) ablation. The purpose of this study was to determine the predictors of ERAF and delayed cure after a single pulmonary vein isolation (PVI) performed in paroxysmal AF patients without structural heart disease.

Methods and results

In 108 consecutive patients (93 men, 15 women; mean age 51 ± 8 years) with paroxysmal AF and no structural heart disease, segmental PVI guided by a Lasso catheter was performed. Forty-one percent (44/108) AF patients had ERAF after a single PVI. Univariate analysis revealed that left atrial diameter (p = 0.004), age (p = 0.024) and P-wave dispersion (p = 0.045) were significantly related to ERAF. Logistic regression analysis revealed that left atrial enlargement was the only independent predictor of ERAF (odds ratio [OR] 1.17; 95% confidence interval [CI] 1.04–1.30, p = 0.006). Delayed cure occurred in 32% (14/44) patients with ERAF. P-wave dispersion (p = 0.001), left atrial diameter (p = 0.008) were significantly related to delayed cure. P-wave dispersion was the only independent predictive factor of delayed cure (OR 0.91; 95% CI 0.85–0.97, p = 0.004).


Elderly patients with left atrial enlargement and a high dispersion of P wave are susceptible to ERAF after a single PVI. Left atrial enlargement is the only independent predictor of ERAF. Among patients with ERAF, those with less P-wave dispersion and less left atrial diameter have a higher probability of delayed cure. P-wave dispersion can independently predict delayed cure.


Atrial fibrillation Ablation Pulmonary veins Recurrence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haissaguerre, M., Jais, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., et al. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New England Journal of Medicine, 339, 659–666.PubMedCrossRefGoogle Scholar
  2. 2.
    Haissaguerre, M., Shah, D. C., Jais, P., Hocini, M., Yamane, T., Deisenhofer, I., et al. (2000). Electrophysiological breakthroughs from the left atrium to the pulmonary veins. Circulation, 102, 2463–2465.PubMedGoogle Scholar
  3. 3.
    Lee, S. H., Tai, C. T., Hsieh, M. H., Tsai, C. F., Lin, Y. K., Tsao, H. M., et al. (2004). Predictors of early and late recurrence of atrial fibrillation after catheter ablation of paroxysmal atrial fibrillation. Journal of Interventional Cardiology Electrophysiology, 10, 221–226.CrossRefGoogle Scholar
  4. 4.
    Bertaglia, E., Stabile, G., Senatore, G., Zoppo, F., Turco, P., Amellone, C., et al. (2005). Predictive value of early atrial tachyarrhythmias recurrence after circumferential anatomical pulmonary vein ablation. Pacing Clinical Electrophysiology, 28, 366–371.CrossRefGoogle Scholar
  5. 5.
    Oral, H., Knight, B. P., Ozaydin, M., Tada, H., Chugh, A., Hassan, S., et al. (2002). Clinical significance of early recurrences of atrial fibrillation after pulmonary vein isolation. Journal of the American College Cardiology, 40, 100–104.CrossRefGoogle Scholar
  6. 6.
    O’Donnell, D., Furniss, S. S., Dunuwille, A., & Bourke, J. P. (2003). Delayed cure despite early recurrence after pulmonary vein isolation for atrial fibrillation. American Journal of Cardiology, 91, 83–85.PubMedCrossRefGoogle Scholar
  7. 7.
    Dong, J. Z., Liu, X. P., Long, D. Y., Liu, X. Q., Wang, J., Fang, D. P., et al. (2005). Impact of different ablation strategies on the delayed cure after trans-catheter ablation for treating patients with atrial fibrillation. Chinese Medical Journal (Engl), 118, 1150–1155.Google Scholar
  8. 8.
    Vasamreddy, C. R., Lickfett, L., Jayam, V. K., Nasir, K., Bradley, D. J., Eldadah, Z., et al. (2004). Predictors of recurrence following catheter ablation of atrial fibrillation using an irrigated-tip ablation catheter. Journal of Cardiovascular Electrophysiology, 15, 692–697.PubMedCrossRefGoogle Scholar
  9. 9.
    Gerstenfeld, E. P., Sauer, W., Callans, D. J., Dixit, S., Lin, D., Russo, A. M., et al. (2006). Predictors of success after selective pulmonary vein isolation of arrhythmogenic pulmonary veins for treatment of atrial fibrillation. Heart Rhythm, 3, 165–170.PubMedCrossRefGoogle Scholar
  10. 10.
    Andrikopoulos, G. K., Dilaveris, P. E., Richter, D. J., Gialafos, E. J., Synetos, A. G., & Gialafos, J. E. (2000). Increased variance of P-wave duration on the electrocardiogram distinguishes patients with idiopathic paroxysmal atrial fibrillation. Pacing and Clinical Electrophysiology, 23, 1127–1132.PubMedCrossRefGoogle Scholar
  11. 11.
    Ozdemir, O., Soylu, M., Demir, A. D., Alyan, O., Topaloglu, S., Geyik, B., et al. (2006). Does p-wave dispersion predict the atrial fibrillation occurrence after direct-current shock therapy? Angiology, 57, 93–98.PubMedCrossRefGoogle Scholar
  12. 12.
    Nanthakumar, K., Plumb, V. J., Epstein, A. E., Veenhuyzen, G. D., Link, D., & Kay, G. N. (2004). Resumption of electrical conduction in previously isolated pulmonary veins: rationale for a different strategy? Circulation, 109, 1226–1229.PubMedCrossRefGoogle Scholar
  13. 13.
    Lemola, K., Hall, B., Cheung, P., Good, E., Han, J., Tamirisa, K., et al. (2004). Mechanisms of recurrent atrial fibrillation after pulmonary vein isolation by segmental ostial ablation. Heart Rhythm, 1, 197–202.PubMedCrossRefGoogle Scholar
  14. 14.
    Pappone, C., Oreto, G., Rosanio, S., Vicedomini, G., Tocchi, M., Gugliotta, F., et al. (2001). Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: Efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation, 104, 2539–2544.PubMedGoogle Scholar
  15. 15.
    Coumel, P. (1994). Paroxysmal atrial fibrillation: a disorder of autonomic tone? European Heart Journal, 15(Suppl A), 9–16.PubMedGoogle Scholar
  16. 16.
    Martinez-Pellus, A. E., Merino, P., Bru, M., Canovas, J., Seller, G., Sapina, J., et al. (1997). Endogenous endotoxemia of intestinal origin during cardiopulmonary bypass. Intensive Care Medicine, 23, 1251–1257.PubMedCrossRefGoogle Scholar
  17. 17.
    Fenelon, G., & Brugada, P. (1996). Delayed effects of radiofrequency energy: mechanisms and clinical implications. Pacing Clinical Electrophysiology, 19, 484–489.CrossRefGoogle Scholar
  18. 18.
    Mangrum, J. M., Everett, T. H. 4th, Mitchell, M. A., McRury, I. D., Li, H., & Haines, D. E. (2002). The effects of reverse atrial electrical remodeling on atrial defibrillation thresholds. Pacing Clinical Electrophysiology, 25, 470–476.CrossRefGoogle Scholar
  19. 19.
    Solti, F., Vecsey, T., Kekesi, V., & Juhasz-Nagy, A. (1989). The effect of atrial dilatation on the genesis of atrial arrhythmias. Cardiovascular Research, 23, 882–885.PubMedCrossRefGoogle Scholar
  20. 20.
    Spach, M. S., & Dolber, P. C. (1986). Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circulation Research, 58, 356–371.PubMedGoogle Scholar
  21. 21.
    Kistler, P. M., Sanders, P., Fynn, S. P., Stevenson, I. H., Spence, S. J., Vohra, J. K., et al. (2004). Electrophysiologic and electroanatomic changes in the human atrium associated with age. Journal of the American College Cardiology, 44, 109–116.CrossRefGoogle Scholar
  22. 22.
    Dilaveris, P. E., Gialafos, E. J., Sideris, S. K., Theopistou, A. M., Andrikopoulos, G. K., Kyriakidis, M., et al. (1998). Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. American Heart Journal, 135(5 Pt 1), 733–738.PubMedCrossRefGoogle Scholar
  23. 23.
    Aras, D., Maden, O., Ozdemir, O., Aras, S., Topaloglu, S., Yetkin, E., et al. (2005). Simple electrocardiographic markers for the prediction of paroxysmal atrial fibrillation in hyperthyroidism. International Journal of Cardiology, 99, 59–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Kose, S., Aytemir, K., Sade, E., Can, I., Ozer, N., Amasyali, B., et al. (2003). Detection of patients with hypertrophic cardiomyopathy at risk for paroxysmal atrial fibrillation during sinus rhythm by P-wave dispersion. Clinical Cardiology, 26, 431–434.PubMedGoogle Scholar
  25. 25.
    Tukek, T., Yildiz, P., Akkaya, V., Karan, M. A., Atilgan, D., Yilmaz, V., et al. (2002). Factors associated with the development of atrial fibrillation in COPD patients: the role of P-wave dispersion. Annals of Noninvasive Electrocardiology, 7, 222–227.PubMedGoogle Scholar
  26. 26.
    Aytemir, K., Amasyali, B., Kose, S., Kilic, A., Abali, G., Oto, A., et al. (2004). Maximum P-wave duration and P-wave dispersion predict recurrence of paroxysmal atrial fibrillation in patients with Wolff–Parkinson–White syndrome after successful radiofrequency catheter ablation. Journal of Interventional Cardiology Electrophysiology, 11, 21–27.CrossRefGoogle Scholar
  27. 27.
    Gang, Y., Hnatkova, K., Mandal, K., Ghuran, A., & Malik, M. (2004). Preoperative electrocardiographic risk assessment of atrial fibrillation after coronary artery bypass grafting. Journal of Cardiovascular Electrophysiology, 15, 1379–1386.PubMedCrossRefGoogle Scholar
  28. 28.
    Tezcan, U. K., Amasyali, B., Can, I., Aytemir, K., Kose, S., Yavuz, I., et al. (2004). Increased P-wave dispersion and maximum P-wave duration after hemodialysis. Annals of Noninvasive Electrocardiology, 9, 34–38.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Hong Jiang
    • 1
    Email author
  • Zhibing Lu
    • 1
  • Handong Lei
    • 1
  • Dongdong Zhao
    • 1
  • Bo Yang
    • 1
  • Congxin Huang
    • 1
  1. 1.Department of CardiologyRenmin Hospital of Wuhan UniversityWuchangChina

Personalised recommendations