Advertisement

Evolutionary Explanations of Simple Communication: Signalling Games and Their Models

  • Travis LaCroixEmail author
Article

Abstract

This paper applies the theoretical criteria laid out by D’Arms et al. (1998) to various aspects of evolutionary models of signalling. The question that D’Arms et al. seek to answer can be formulated as follows: Are the models that we use to explain the phenomena in question conceptually adequate? The conceptual adequacy question relates the formal aspects of the model to those aspects of the natural world that the model is supposed to capture. Moreover, this paper extends the analysis of D’Arms et al. by asking the following additional question: Are the models that we use sufficient to explain the phenomena in question? The sufficiency question asks what formal resources are minimally required for the model to get the right results most of the time.

Keywords

Signalling games Evolutionary game theory Evolutionary models Robustness Modelling 

Notes

Acknowledgements

This research was supported by the Social Sciences and Humanities Research Council of Canada, as well as a fellowship from the Department of Philosophy at Simon Fraser University. I would like to acknowledge the following people for their helpful comments and support during the writing of this paper: Nic Fillion, Matt DeVos, Holly Anderson, Jeffrey Barrett, Brian Skyrms, Louis Narens, Simon Huttegger, Cailin O’Connor, Aydin Mohseni, John Woods, Endre Begby, Gabriel Larivière, Nikolas Hamm, Sarah LaCroix. I would like to thank audiences at the IV Philogica Conference for Logic, Epistemology, and Philosophy of Science in Bogotà, Colombia and the Fall (2016) Social Dynamics Seminar at the Department of Logic and Philosophy of Science at UC Irvine. I would additionally like to thank the anonymous reviewers for extremely helpful comments and criticisms. Finally, thanks to Yoshua Bengio and the Québec AI Institute for providing generous resources.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahern, C., & Clark, R. (2014). Diachronic processes in language as signaling under conflicting interests. In E. Cartmill, S. Roberts, H. Lyn, & H. Cornish (Eds.), The evolution of language: Proceedings of the 10th international conference on the evolution of language, Vienna, Austria, 14–17 April 2014 (pp. 25–32). Singapore: World Scientific.Google Scholar
  2. Alexander, J. M. (2007). The structural evolution of morality. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Alexander, J. M., Skyrms, B., & Zabell, S. L. (2012). Inventing new signals. Dynamic Games and Applications, 2(1), 129–145.CrossRefGoogle Scholar
  4. Argiento, R., Pemantle, R., Skyrms, B., & Volkov, S. (2009). Learning to signal: Analysis of a micro-level reinforcement model. Stochastic Processes and Their Applications, 119(2), 373–390.CrossRefGoogle Scholar
  5. Barrett, J. A. (2006). Numerical simulations of the lewis signaling game: Learning strategies, pooling equilibria, and evolution of grammar. Technical Report, Institute for Mathematical Behavioral Science, University of California.Google Scholar
  6. Barrett, J. A. (2007). Dynamic partitioning and the conventionality of kinds. Philosophy of Science, 74(4), 527–546.CrossRefGoogle Scholar
  7. Barrett, J. A. (2009). The evolution of coding in signaling games. Theory and Decision, 67(2), 223–237.CrossRefGoogle Scholar
  8. Barrett, J. A. (2016). On the evolution of truth. Erkenntnis, 81(6), 1323–1332.CrossRefGoogle Scholar
  9. Barrett, J. A. (2017). Truth and probability in evolutionary games. Journal of Experimental and Theoretical Artificial Intelligence, 29(1), 219–225.CrossRefGoogle Scholar
  10. Barrett, J. A., & Skyrms, B. (2017). Self-assembling games. The British Journal for the Philosophy of Science, 68(2), 329–353.CrossRefGoogle Scholar
  11. Barrett, J. A., Skyrms, B., & Cochran, C. (2018). Hierarchical models for the evolution of compositional language. http://philsci-archive.pitt.edu/14725/. Accessed 30 May 2018.
  12. Barrett, J. A., & Zollman, K. (2009). The role of forgetting in the evolution and learning of language. Journal of Experimental and Theoretical Artificial Intelligence, 21(4), 293–309.CrossRefGoogle Scholar
  13. Batterman, R. W. (2009). Idealization and modeling. Synthese, 169(3), 427–446.CrossRefGoogle Scholar
  14. Beggs, A. W. (2005). On the convergence of reinforcement learning. Journal of Economic Theory, 122(1), 1–36.CrossRefGoogle Scholar
  15. Bereby-Meyer, Y., & Erev, I. (1998). On learning to become a successful loser: A comparison of alternative abstractions of learning processes in the loss domain. Journal of Mathematical Psychology, 42(2), 266–286.CrossRefGoogle Scholar
  16. Berleman, J. E., Scott, J., Chumley, T., & Kirby, J. R. (2008). Predataxis behaviour in Myxococcus xanthus. In Proceedings of the National Academy of Sciences, 105(44), 17127–17132.Google Scholar
  17. Bratman, M. E. (1999). Faces of intention. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Bruner, J., O’Connor, C., Rubin, H., & Huttegger, S. M. (2018). David lewis in the lab: Experimental results on the emergence of meaning. Synthese, 195(2), 603–621.CrossRefGoogle Scholar
  19. Brusse, C., & Bruner, J. (2017). Responsiveness and robustness in the David Lewis signaling game. Philosophy of Science, 84(5), 1068–1079.CrossRefGoogle Scholar
  20. Bush, R. R., & Mosteller, F. (1955). Stochastic models for learning. Oxford: Wiley.CrossRefGoogle Scholar
  21. Cheney, D. L., & Seyfarth, R. (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  22. Clark, H. H. (1996). Using language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Nôus, 25(4), 487–512.Google Scholar
  24. Crawford, V. P., & Sobel, J. (1982). Strategic information transmission. Econometrica, 50(6), 1431–1451.CrossRefGoogle Scholar
  25. D’Arms, J. (1996). Sex, fairness, and the theory of games. Journal of Philosophy, 93(12), 615–627.CrossRefGoogle Scholar
  26. D’Arms, J. (2000). When evolutionary game theory explains morality, what does it explain? Journal of Consciousness Studies, 7(1–2), 296–299.Google Scholar
  27. D’Arms, J., Batterman, R., & Gorny, K. (1998). Game theoretic explanations and the evolution of justice. Philosophy of Science, 65(1), 76–102.CrossRefGoogle Scholar
  28. Donaldson, M. C., Lachmann, M., & Bergstrom, C. T. (2007). The evolution of functionally referential meaning in a structured world. Journal of Theoretical Biology, 246(2), 225–233.CrossRefGoogle Scholar
  29. Erev, I., & Roth, A. E. (1998). Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. American Economic Review, 88(4), 848–881.Google Scholar
  30. Fitch, W. T. (2010). The evolution of language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Fitch, W. T. (2017). Empirical approaches to the study of language evolution. Psychonomic Bulletin & Review, 24(1), 3–33.CrossRefGoogle Scholar
  32. Franke, M. (2016). The evolution of compositionality in signaling games. Journal of Logic, Language and Information, 25(3), 355–377.CrossRefGoogle Scholar
  33. Franke, M., de Jager, T., & van Rooij, R. (2012). Relevance in cooperation and conflict. Journal of Logic and Computation, 22(1), 23–54.CrossRefGoogle Scholar
  34. Franke, M., & Wagner, E. O. (2014). Game theory and the evolution of meaning. Language and Linguistics Compass, 8(9), 359–372.CrossRefGoogle Scholar
  35. Gilbert, M. (1989). On social facts. Princeton, NJ: Princeton University Press.Google Scholar
  36. Gintis, H. (2000). Classical versus evolutionary game theory. Journal of Consciousness Studies, 7(1–2), 300–304.Google Scholar
  37. Godfrey-Smith, P., & Martínez, M. (2013). Communication and common interest. PLoS Computational Biology, 9(11), 1–6.CrossRefGoogle Scholar
  38. Greene, E., & Maegher, T. (1998). Red squirrels, Tamiasciurus hudsonicus, produce predator-class specific alarm calls. Animal Behaviour, 55(3), 511–518.CrossRefGoogle Scholar
  39. Hailman, J., Ficken, M., & Ficken, R. (1985). The ‘chick-a-dee’ calls of Parus atricapillus. Semiotica, 56(3–4), 191–224.Google Scholar
  40. Harms, W. F. (2000). The evolution of cooperation in hostile environments. Journal of Consciousness Studies, 7(1–2), 308–313.Google Scholar
  41. Harms, W. F. (2004a). Information and meaning in evolutionary processes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. Harms, W. F. (2004b). Primitive content, translation, and the emergence of meaning in animal communication. In D. K. Oller & U. Griebel (Eds.), Evolution of communication systems: A comparative approach (pp. 31–48). Cambridge, MA: The MIT Press.Google Scholar
  43. Herrnstein, R. J. (1970). On the law of effect. Journal of Experimental Analysis of Behavior, 13(2), 243–266.CrossRefGoogle Scholar
  44. Hofbauer, J., & Huttegger, S. (2008). The feasibility of communication in binary signaling games. Journal of Theoretical Biology, 254(4), 843–849.CrossRefGoogle Scholar
  45. Hofbauer, J., & Sigmund, K. (1998). Evolutionary games and population dynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Hofbauer, J., & Sigmund, K. (2003). Evolutionary game dynamics. Bulletin of the American Mathematical Society, 40(4), 479–519.CrossRefGoogle Scholar
  47. Hopkins, E., & Posch, M. (2005). Attainability of boundary points under reinforcement learning. Games and Economic Behavior, 53(1), 110–125.CrossRefGoogle Scholar
  48. Humphreys, P., & Imbert, C. (2012). Models, simulations, and representations, routledge studies in the philosophy of science (Vol. 9). New York: Routledge.Google Scholar
  49. Huttegger, S. M. (2007a). Evolution and the explanation of meaning. Philosophy of Science, 74(1), 1–27.CrossRefGoogle Scholar
  50. Huttegger, S. M. (2007b). Evolutionary explanations of indicatives and imperatives. Erkenntnis, 66(3), 409–436.CrossRefGoogle Scholar
  51. Huttegger, S. M. (2007c). Robustness in signaling games. Philosophy of Science, 74(5), 839–847.CrossRefGoogle Scholar
  52. Huttegger, S. M., Skyrms, B., Smead, R., & Zollman, K. J. S. (2010). Evolutionary dynamics of Lewis signaling games: Signaling systems vs. partial pooling. Synthese, 172(1), 177–191.CrossRefGoogle Scholar
  53. Jackendoff, R. S. (1999). Possible stages in the evolution of the language capacity. Trends in Cognitive Sciences, 3(7), 272–279.CrossRefGoogle Scholar
  54. Jackendoff, R. S. (2002). Foundations of language: Brain, meaning, grammar, evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
  55. Kirby, S., & Hurford, J. R. (2002). The emergence of linguistic structure: An overview of the iterated learning model. In A. Cangelosi & D. Parisi (Eds.), Simulating the evolution of language (pp. 121–147). London: Springer.CrossRefGoogle Scholar
  56. Kirchhof, J., & Hammerschmidt, K. (2006). Functionally referential alarm calls in tamarins (Saguinus fuscicollis and Saguinus mystax)—Evidence from playback experiments. Ethology, 112(4), 346–354.CrossRefGoogle Scholar
  57. Kitcher, P. (1999). Games social animals play: Commentary on Brian Skyrms’ evolution of the social contract. Philosophy and Phenomenological Research, 59(1), 221–228.CrossRefGoogle Scholar
  58. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86.CrossRefGoogle Scholar
  59. LaCroix, T. (2018). On salience and signaling in sender receiver games: Partial pooling, learning, and focal points. Synthese.  https://doi.org/10.1007/s11229-018-1766-z.CrossRefGoogle Scholar
  60. LaCroix, T. (2019). Using logic to evolve more logic: Composing logical operators via self-assembly (unpublished manuscript). http://philsci-archive.pitt.edu/16555/.
  61. Levins, R. (1966). The strategy of model building in population biology. In E. Sober (Ed.), Conceptual issues in evolutionary biology (pp. 18–27). Cambridge, MA: The MIT Press.Google Scholar
  62. Levins, R. (1993). A response to Orzack and Sober: formal analysis and the fluidity of science. Quarterly Review of Biology, 68(4), 547–555.CrossRefGoogle Scholar
  63. Lewis, D. (2002). Convention. Oxford: Blackwell. (First published 1969 by Harvard University Press.)Google Scholar
  64. Lieberman, P. (2000). Human language and our reptilian brain: The subcortical bases of speech, syntax and thought. Cambridge, MA: Harvard University Press.Google Scholar
  65. Macedonia, J. M. (1990). What is communicated in the antipredator calls of lemurs: Evidence from antipredator call playbacks to ring-tailed and ruffed lemurs. Ethology, 86(3), 177–190.CrossRefGoogle Scholar
  66. Martínez, M., & Godfrey-Smith, P. (2016). Common interest and signaling games: A dynamic analysis. Philosophy of Science, 83(3), 371–392.CrossRefGoogle Scholar
  67. Maynard Smith, J. (1991). Honest signalling: The Philip Sidney game. Animal Behaviour, 42(6), 1034–1035.CrossRefGoogle Scholar
  68. Mayr, E. (1961). Cause and effect in biology. Science, 134(3489), 1501–1506.CrossRefGoogle Scholar
  69. Millikan, R. G. (1995). Pushmi-pullyu representations. Philosophical Perspectives, 9, 185–200.CrossRefGoogle Scholar
  70. Mühlenbernd, R. (2011). Learning with neighbours: Emergence of convention in a society of learning agents. Synthese, 183(S1), 87–109.CrossRefGoogle Scholar
  71. Mühlenbernd, R., & Franke, M. (2014). Meaning, evolution, and the structure of society. CEUR Workshop Proceedings, 1283, 28–39.Google Scholar
  72. Mühlenbernd, R., & Nick, J. D. (2014). Language change and the force of innovation. In M. Colinet, S. Katrenko, & R. K. Rendsvig (Eds.), Pristine perspectives on logic, language, and computation. ESSLLI 2013, ESSLLI 2012. Lecture notes in computer science, Vol. 8607 (pp. 194–213). Berlin/Heidelberg: Springer.Google Scholar
  73. Nash, J. (1951). Non-cooperative games. The Annals of Mathematics, 54(2), 286–295.CrossRefGoogle Scholar
  74. Neumann, J. V., & Morgenstern, O. (2007). Theory of games and economic behavior. Princeton, NJ: Princeton University Press. (First published 1944 by Princeton University Press.)Google Scholar
  75. Nowak, M. A. (2006). Evolutionary dynamics: Exploring the equations of life. Cambridge, MA: The Belknap Press of Harvard University Press.CrossRefGoogle Scholar
  76. Nowak, M. A., & Krakauer, D. C. (1999). The evolution of language. Proceedings of the National Academy of Sciences, 96(14), 8028–8033.CrossRefGoogle Scholar
  77. Nowak, M. A., Sasaki, A., Taylor, C., & Fudenberg, D. (2004). Emergence of cooperation and evolutionary stability in finite populations. Nature, 428(6983), 646–650.CrossRefGoogle Scholar
  78. Orzack, S. H., & Sober, E. (1993). A critical assessment of Levins’s ‘The strategy of model building in population biology’ (1966). Biology and Philosophy, 68(4), 533–546.Google Scholar
  79. Pawlowitsch, C. (2007). Finite populations choose an optimal language. Journal of Theoretical Biology, 249(3), 606–616.CrossRefGoogle Scholar
  80. Pawlowitsch, C. (2008). Why evolution does not always lead to an optimal signaling system. Games and Economic Behavior, 63(1), 203–226.CrossRefGoogle Scholar
  81. Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13(4), 707–727.CrossRefGoogle Scholar
  82. Pinker, S., & Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95(2), 201–236.CrossRefGoogle Scholar
  83. Progovac, L. (2015). Evolutionary syntax. Oxford: Oxford University Press.CrossRefGoogle Scholar
  84. Progovac, L. (2019). A critical introduction to language evolution: Current controversies and future prospects. Berlin: Springer.CrossRefGoogle Scholar
  85. Quine, W. V. O. (1967). Truth by covention. In O. H. Lee (Ed.), Philosophical essays for Alfred North Whitehead (pp. 90–124). New York: Russell & Russell.Google Scholar
  86. Roth, A. E., & Erev, I. (1995). Learning in extensive form games: Experimental data and simple dynamical models in the intermediate term. Games and Economic Behavior, 8, 164–212.CrossRefGoogle Scholar
  87. Russell, B. (1922). Analysis of mind. New York: The MacMillan Company.Google Scholar
  88. Sandholm, W. H. (2010). Population games and evolutionary dynamics. Cambridge, MA: The MIT Press.Google Scholar
  89. Santana, C. (2014). Ambiguity in cooperative signaling. Philosophy of Science, 81(3), 398–422.CrossRefGoogle Scholar
  90. Schelling, T. C. (1980). The strategy of conflict. Cambridge, MA: Harvard University Press.Google Scholar
  91. Schreiber, S. J. (2001). Urn models, replicator processes, and random genetic drift. SIAM Journal on Applied Mathematics, 61(6), 2148–2167.CrossRefGoogle Scholar
  92. Searle, J. (1995). The construction of social reality. New York: Free Press.Google Scholar
  93. Skyrms, B. (1990). The dynamics of rational deliberation. Cambridge, MA: Harvard University Press.Google Scholar
  94. Skyrms, B. (1994). Darwin meets the logic of decision: Correlation in evolutionary game theory. Philosophy of Science, 61(4), 503–528.CrossRefGoogle Scholar
  95. Skyrms, B. (2000). Stability and explanatory significance of some simple evolutionary models. Philosophy of Science, 67(1), 94–113.CrossRefGoogle Scholar
  96. Skyrms, B. (2004). The stag hunt and the evolution of social structure. Cambridge: Cambridge University Press.Google Scholar
  97. Skyrms, B. (2009). Evolution of signaling systems with multiple senders and receivers. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1518), 771–779.CrossRefGoogle Scholar
  98. Skyrms, B. (2010a). Signals: Evolution, learning, & information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  99. Skyrms, B. (2010b). The flow of information in signaling games. Philosophical Studies, 147(1), 155–165.CrossRefGoogle Scholar
  100. Skyrms, B. (2014). Evolution of the social contract (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  101. Slobodchikoff, C. N., Kiriazis, J., Fischer, C., & Creef, E. (1991). Semantic information distinguishing individual predators in the alarm calls of Gunnison’s prairie dogs. Animal Behaviour, 42(5), 713–719.CrossRefGoogle Scholar
  102. Smith, K., Kirby, S., & Brigthon, H. (2003). Iterated learning: A framework for the emergence of language. Artificial Life, 9(4), 371–386.CrossRefGoogle Scholar
  103. Spelke, E. (2003). What makes us smart? Core knowledge and natural language. In D. Gentner & S. Goldin-Meadow (Eds.), Language in mind: Advances in the investigation of language and thought (pp. 277–311). Cambridge, MA: The MIT Press.Google Scholar
  104. Spence, M. (1973). Job market signaling. The Quarterly Journal of Economics, 87(3), 355–374.CrossRefGoogle Scholar
  105. Spike, M., Stadler, K., Kirby, S., & Smith, K. (2013). Learning, feedback and information in self-organizing communication systems. Proceedings of Cogsci, 87(3), 3442–3447.Google Scholar
  106. Steinert-Threlkeld, S. (2014). Learning to use function words in signaling games. In E. Lorini & L. Perrussel (Eds.), Proceedings of information dynamics in artificial societies (IDAS-14).Google Scholar
  107. Steinert-Threlkeld, S. (2016). Compositional signaling in a complex world. Journal of Logic, Language, and Information, 25(3–4), 379–397.CrossRefGoogle Scholar
  108. Sterelny, K. (2012). A glass half-full: Brian Skyrms’s signals. Economics and Philosophy, 28(1), 73–86.CrossRefGoogle Scholar
  109. Sugden, R. (2000). Credible worlds: The status of theoretical models in economics. Journal of Economic Methodology, 7(1), 1–31.CrossRefGoogle Scholar
  110. Taylor, P., & Jonker, L. (1978). Evolutionarily stable strategies and game dynamics. Mathematical Biosciences, 40(1–2), 145–156.CrossRefGoogle Scholar
  111. Thorndike, E. L. (1905). The elements of psychology. Syracuse: The Mason Press.CrossRefGoogle Scholar
  112. Thorndike, E. L. (1911). Animal intelligence: Experimental studies. New York: The Macmillan Company.CrossRefGoogle Scholar
  113. Thorndike, E. L. (1927). The law of effect. American Journal of Psychology, 39(1/4), 212–222.CrossRefGoogle Scholar
  114. Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
  115. Vanderschraaf, P. (1995). Convention as correlated equilibrium. Erkenntnis, 42(1), 65–87.CrossRefGoogle Scholar
  116. von Frisch, K. (1967). The dance language and orientation of the bees. Cambridge, MA: Harvard University Press.Google Scholar
  117. Wagner, E. O. (2009). Communication and structured correlation. Erkenntnis, 71(3), 377–393.CrossRefGoogle Scholar
  118. Wagner, E. O. (2012). Deterministic chaos and the evolution of meaning. British Journal for the Philosophy of Science, 63(3), 547–575.CrossRefGoogle Scholar
  119. Weisberg, M. (2006). Robustness analysis. Philosophy of Science, 73(5), 730–742.CrossRefGoogle Scholar
  120. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Cambridge, MA: Harvard University Press.Google Scholar
  121. Zeeman, E. C. (1980). Population dynamics from game theory. In Z. Nitecki & C. Robinson (Eds.), Global theory of dynamical systems. Lecture notes in mathematics, Vol. 819 (pp. 471–497). Berlin/Heidelberg: Springer.Google Scholar
  122. Zollman, K. J. S. (2005). Talking to neighbors: The evolution of regional meaning. Philosophy of Science, 72(1), 69–85.CrossRefGoogle Scholar
  123. Zollman, K. J. S. (2011). Separating directives and assertions using simple signaling games. The Journal of Philosophy, 108(3), 158–169.CrossRefGoogle Scholar
  124. Zuberbühler, K. (2000). Referential labeling in Diana monkeys. Animal Behaviour, 59(5), 917–927.CrossRefGoogle Scholar
  125. Zuberbühler, K. (2001). Predator-specific alarm calls in Campbell’s monkeys, Cercopithecus campbelli. Behavioural Ecology and Sociobiology, 50(5), 414–422.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Logic and Philosophy of ScienceUniversity of CaliforniaIrvineUSA
  2. 2.Mila (Québec Artificial Intelligence Institute/Institut Québécois d’Intelligence Artificielle)MontréalCanada

Personalised recommendations