Advertisement

Knowledge Objects of Synthetic Biology: From Phase Transitions to the Biological Switch

  • Thorsten KohlEmail author
  • Johannes Falk
Article
  • 36 Downloads

Abstract

Following Hans-Jörg Rheinberger’s epistemological concept we show how a generic element of synthetic biology, the “biological switch”, can be integrated into an experimental system. Here synthetic biology is assumed to be a technoscience. Hence, the biological switch becomes a technoscientific research object. Consequently, the experimental system has to be analyzed in a technoscientific experimental setting, showing differences in comparison with the former. To work out the specific properties of the technoscientific experimental system, biological switching behavior (bistability) is compared with the scientific research object laser light in its classical setting. For the analyses, both the laser light and bistability, enabling a biological switch, are considered as epistemic things connected by the same theoretical concept of phase transitions. The so-called Schlögl model is used to model both biological switching behavior and induced emission of radiation and becomes an epistemic thing in itself. It becomes clear that the answer, whether one is dealing with the emission of laser light or with bistable switching behavior, is linked to the perspective taken. The technoscientific orientation towards applications and the development of basic scientific theories require different perspectives on one and the same epistemic thing, here also represented by the model. The research objects of synthetic biology as a technoscience thus also enter into the corresponding experimental systems as techno-epistemic objects. (Please note especially footnote 4 for an explanation and the differentiation of the used notions of “research object”, “knowledge object” or “object of knowledge”, “object of interest” and “epistemic thing” and “techno-epistemic object”. A clarification of the way how these notions are used is essential for further reading.) Their analysis leads to a more complete understanding of what constitutes synthetic biology.

Keywords

Synthetic biology Schlögl model Biological switch Phase transition Bistability Technoscience Epistemology Experimental system 

Notes

Funding

Funding was provided by Hessisches Ministerium für Wissenschaft und Kunst (DE), LOEWE CompuGene.

References

  1. Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology, 2(1), 1–14.CrossRefGoogle Scholar
  2. Bausch, R., Bessenrodt, R., Dohm, V., Janssen, H.-K., Schöll, E., & Stahl, A. (2011). Nachruf auf Friedrich Schlögl. Physik Journal, 10(7), 46.Google Scholar
  3. Bensaude-Vincent, B., Loeve, S., Nordmann, A., & Schwarz, A. (2011). Matters of interest: The objects of research in science and technoscience. Journal for General Philosophy of Science, 42(2), 365–383.CrossRefGoogle Scholar
  4. Collins, R. J., Nelson, D. F., Schawlow, A. L., Bond, W., Garrett, C. G. B., & Kaiser, W. (1960). Coherence, narrowing, directionality, and relaxation oscillations in the light emission from ruby. Physical Review Letters, 5(7), 303–305.CrossRefGoogle Scholar
  5. Deutsche Forschungsgemeinschaft (DFG), Deutsche Akademie der Technikwissenschaften (acatach), & Deutsche Akademie der Naturforscher Leopoldina (Eds.). (2009). Synthetische Biologie. Stellungnahme; Standpunkte. Weinheim: Wiley-VCH.Google Scholar
  6. Drubin, D. A., Way, J. C., & Silver, P. A. (2007). Designing biological systems. Genes & Development, 21(3), 242–254.CrossRefGoogle Scholar
  7. Endres, R. G. (2015). Bistability: Requirements on cell-volume, protein diffusion, and thermodynamics. PLOS ONE, 10(4), e0121681.  https://doi.org/10.1371/journal.pone.0121681.CrossRefGoogle Scholar
  8. Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449–453.CrossRefGoogle Scholar
  9. ETC Group (Action Group on Erosion, Technology and Concentration). (2007). Extreme genetic engineering: An introduction to synthetic biology. http://www.etcgroup.org/content/extreme-genetic-engineering-introduction-synthetic-biology.
  10. European Commission. (2005). Synthetic biology. Report of a NEST high-level expert group EU 21796, Brüssel.Google Scholar
  11. Falk, J., Mendler, M., & Drossel, B. (2017). A minimal model of burst-noise induced bifurcations. PLOS ONE, 12(4), e0176410.  https://doi.org/10.1371/journal.pone.0176410.CrossRefGoogle Scholar
  12. Feyerabend, P. (1999). Conquest of abundance. Chicago: Chicago University Press.Google Scholar
  13. Fischer, E. P. (2010). LASER. Eine deutsche Erfolgsgeschichte von Einstein bis heute. München: Siedler.Google Scholar
  14. Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339–342.CrossRefGoogle Scholar
  15. Goldbeter, A., & Koshland, D. E., Jr. (1981). An amplified sensitivity arising from covalent modification in biological systems. Proceedings of National Academy of Sciences, 78(11), 6840–6844.CrossRefGoogle Scholar
  16. Gramelsberger, G. (2013). The simulation approach in synthetic biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(2), 150–157.CrossRefGoogle Scholar
  17. Haken, H. (1970). Laserlicht – Ein neues Beispiel für eine Phasenumwandlung? In: Deutsche Physikalische Gesellschaft (Ed.), Festkörperprobleme X. Advances in Solid State Physics. Freudenstadt, 6. bis 11. April 1970 (pp. 351–365). Braunschweig: Vieweg und Sohn.Google Scholar
  18. Huang, C.-Y. F., & Ferrell, J. E., Jr. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proceedings of National Academy of Sciences, 93(19), 10078–10083.CrossRefGoogle Scholar
  19. Jacob, F. (1988). Die innere Statue. Autobiografie des Genbiologen und Nobelpreisträgers. Zürich: Ammann.Google Scholar
  20. Kastenhofer, K. (2013). Two sides of the same coin? The (techno)epistemic cultures of system and synthetic biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(2), 130–140.CrossRefGoogle Scholar
  21. Krämer, S., Kogge, W., & Grube, G. (2016). Spur. Spurenlesen als Orientierungstechnik und Wissenskunst. Frankfurt: Suhrkamp.Google Scholar
  22. Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., et al. (2005). Engineering Escherichia coli to see light. Nature, 438(7067), 441–442.CrossRefGoogle Scholar
  23. Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature, 187(4736), 493–494.CrossRefGoogle Scholar
  24. Morrison, M. (2015). Reconstructing reality. Models, mathematics, and simulations. New York: Oxford University Press.CrossRefGoogle Scholar
  25. Nelson, D. F., Collins, R. J., & Kaiser, W. (2010). Bell labs and the ruby laser. Physics Today, 63(1), 40–45.CrossRefGoogle Scholar
  26. Nordmann, A. (2004). Was ist TechnoWissenschaft? – Zum Wandel der Wissenschaftskultur am Beispiel von Nanoforschung und Bionik. In T. Rossmann & C. Tropea (Eds.), Bionik: Aktuelle Forschungsergebnisse in Natur-, Ingenieur- und Geisteswissenschaften (pp. 209–218). Berlin: Springer.Google Scholar
  27. Nordmann, A. (2014). Synthetic biology at the limits of science. In B. Giese, C. Pade, H. Wigger, & A. von Gleich (Eds.), Synthetic biology. Character and impact (pp. 31–58). Heidelberg: Springer.Google Scholar
  28. Rheinberger, H.-J. (1992). Experiment – Differenz – Schrift. Zur Geschichte epistemischer Dinge. Marburg an der Lahn: Basilisken-Presse.Google Scholar
  29. Rheinberger, H.-J. (2002). Experimentalsysteme und epistemische Dinge. Eine Geschichte der Proteinsynthese im Reagenzglas. Göttingen: Wallstein.Google Scholar
  30. Rheinberger, H.-J. (2007). Wie werden aus Spuren Daten, und wie verhalten sich Daten zu Fakten? Nach Feierabend. Züricher Jahrbuch für Wissensgeschichte, 3, 117–125.Google Scholar
  31. Rheinberger, H.-J. (2009). Sichtbar Machen. Visualisierung in den Naturwissenschaften. In K. Sachs-Hornbach (Ed.), Bildtheorien: Anthropologische und kulturelle Grundlagen des Visualistic Turn (pp. 127–145). Frankfurt: Suhrkamp.Google Scholar
  32. Rheinberger, H.-J. (2011). Infra-experimentality: From traces to data, from data to patterning facts. History of Science, 49(3), 337–348.CrossRefGoogle Scholar
  33. Rheinberger, H.-J. (2015). Über den Eigensinn epistemischer Dinge. In H. P. Hahn (Ed.), Vom Eigensinn der Dinge. Für eine neue Perspektive auf die Welt des Materiellen (pp. 147–162). Berlin: Neofilis.Google Scholar
  34. Rheinberger, H.-J. (2016). Spurenlesen im Experimentalsystem. In S. Krämer, W. Kogge, & G. Grube (Eds.), Spur. Spurenlesen als Orientierungstechnik und Wissenskunst (pp. 293–308). Frankfurt: Suhrkamp.Google Scholar
  35. Schlögl, F. (1972). Chemical reaction models for non-equilibrium phase transitions. Zeitschrift für Physik, 253(2), 147–161.CrossRefGoogle Scholar
  36. Schmidt, J. C. (2012). Selbstorganisation als Kern der Synthetischen Biologie. Ein Beitrag zur “Prospektiven Technikfolgenabschätzung”. Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis, 21(2), 29–35.Google Scholar
  37. Schwarz, A., & Nordmann, A. (2010). The political economy of technoscience. In M. Carrier & A. Nordmann (Eds.), Science in the context of application. Boston Studies in the philosophy of science 274 (pp. 317–336). Dordrecht: Springer.Google Scholar
  38. Stadtman, E. R., & Chock, P. B. (1977). Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of monocyclic systems. Proceedings of the National Academy of Sciences, 74(7), 2761–2765.CrossRefGoogle Scholar
  39. Tessy Consortium. (2008). Information leaflet: Synthetic biology in Europe. http://www.eurosfaire.prd.fr/7pc/doc/1245144155_tessy_final_report_d5_3.pdf.
  40. Thomas, R. (1994). The role of feedback circuits: Positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix. Berichte der Bundesgesellschaft für physikalische Chemie, 98(9), 1148–1151.CrossRefGoogle Scholar
  41. Vellela, M., & Qian, H. (2009). Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: The Schlögl model revisited. Journal of the Royal Society, Interface, 6(39), 925–940.CrossRefGoogle Scholar
  42. Wilhelm, T. (2009). The smallest chemical reaction system with bistability. BMC Systems Biology, 3(1), Article 90.  https://doi.org/10.1186/1752-0509-3-90.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Computational Systems Biology, Department of Life Sciences and ChemistryJacobs UniversityBremenGermany

Personalised recommendations