Advertisement

A Comment on ‘Cosmology and Convention’ by David Merritt

  • Man Ho ChanEmail author
Discussion
  • 26 Downloads

Abstract

In a recent article Merritt (2017) has claimed that current observational data provide “severe tests” falsifying the standard cosmological model (the Lambda-Cold-Dark-Matter model). Based on Popper’s idea of conventionalism, he concludes that the introduction of some essential components of the standard cosmological model—including dark matter and dark energy—are a consequence of conventionalist stratagems. In this article, I provide more recent discoveries and discussions showing that the standard cosmological model is not built on any conventionalist stratagem.

Keywords

Dark matter Dark energy Cosmology Conventionalism 

Notes

Acknowledgements

I am grateful to Tom Mongan and the referee for helpful comments on the manuscript. This work is partially supported by the Dean’s Research Grant from the Education University of Hong Kong (activity code 04301).

References

  1. Barbagallo, M., et al. (2016). The 7Be(n,α) 4He reaction and the cosmological lithium problem: measurement of the cross section in a wide energy range at n TOF (CERN). Physical Review Letters, 117(15), article id 152701.Google Scholar
  2. Barreira, A., & Avelino, P. P. (2011). Anthropic versus cosmological solutions to the coincidence problem. Physical Review D, 83(10), article id 103001.Google Scholar
  3. Bertone, G., Bozorgnia, N., Kim, J. S., et al. (2018). Identifying WIMP dark matter from particle and astroparticle data. Journal of Cosmology and Astroparticle Physics, 03, article id 026.Google Scholar
  4. Bertone, G., & Hooper, D. (2018). A history of dark matter. Review of Modern Physics, 90(4), article id 45002.Google Scholar
  5. Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. (2011). Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Monthly Notices of the Royal Astronomical Society, 415(1), L40–L44.CrossRefGoogle Scholar
  6. Brooks, A. M., Kuhlen, M., Zolotov, A., et al. (2013). A Baryonic solution to the missing satellites problem. The Astrophysical Journal, 765(1), article id 22.Google Scholar
  7. Burkert, A. (2000). The structure and evolution of weakly self-interacting cold dark matter halos. The Astrophysical Journal, 534(2), L143–L146.CrossRefGoogle Scholar
  8. Burkert, A. (2015). The structure and dark halo core properties of dwarf spheroidal galaxies. The Astrophysical Journal, 808(2), article id 158.Google Scholar
  9. Chan, M. H. (2013). Reconciliation of modified Newtonian dynamics and dark matter theory. Physical Review D, 88(10), article id 103501.Google Scholar
  10. Chan, M. H. (2017). Analytic expressions for the dark matter-baryon relations. International Journal of Modern Physics D, 26(10), article id 1750118.Google Scholar
  11. Cheng, T.-P. (2010). Relativity, gravitation and cosmology: A basic introduction. Oxford: Oxford University Press.Google Scholar
  12. Dawes, G. (2009). Theism and explanation. New York: Routledge.Google Scholar
  13. Daylan, T., et al. (2016). The characterization of the gamma-ray signal from the central milky way: A compelling case for annihilating dark matter. Physics of the Dark Universe, 12, 1–23.CrossRefGoogle Scholar
  14. de Blok, W. J. G. (2010). The core-cusp problem. Advances in Astronomy, 2010(1–2), article id 789293.Google Scholar
  15. Desmond, H. (2017). A statistical investigation of the mass discrepancy acceleration relation. Monthly Notices of the Royal Astronomical Society, 464(4), 4160–4175.CrossRefGoogle Scholar
  16. Di Cintio, A., & Lelli, F. (2016). The mass discrepancy acceleration relation in a ΛCDM context. Monthly Notices of the Royal Astronomical Society, 456(1), L127–L131.CrossRefGoogle Scholar
  17. Di Mauro, M., Donato, F., Fornengo, N., et al. (2016). Dark matter vs. astrophysics in the interpretation of AMS-02 electron and positron data. Journal of Cosmology and Astroparticle Physics, 05, article id 031.Google Scholar
  18. Dunkel, J. (2004). On the relationship between modified Newtonian dynamics and dark matter. The Astrophysical Journal, 604(1), L37–L40.CrossRefGoogle Scholar
  19. Elbert, O. D., Bullock, J. S., Garrison-Kimmel, S., et al. (2015). Core formation in dwarf haloes with self-interacting dark matter: No fine-tuning necessary. Monthly Notices of the Royal Astronomical Society, 453(1), 29–37.CrossRefGoogle Scholar
  20. Fields, B. D. (2011). The Primordial lithium problem. Annual Review of Nuclear and Particle Science, 61, 47–68.CrossRefGoogle Scholar
  21. Freedman, W. L. (2017). Cosmology at a crossroads. Nature Astronomy, 1, article id 0121.Google Scholar
  22. Freeland, E., & Wilcots, E. (2011). Intergalactic gas in groups of galaxies: Implications for dwarf spheroidal formation and the missing baryons problem. The Astrophysical Journal, 738(2), article id 145.Google Scholar
  23. Governato, F., Zolotov, A., Pontzen, A., et al. (2012). Cuspy no more: How outflows affect the central dark matter and baryon distribution in Λ Cold Dark Matter galaxies. Monthly Notices of the Royal Astronomical Society, 422(2), 1231–1240.CrossRefGoogle Scholar
  24. Hou, S. Q., He, J. J., Parikh, A., et al. (2017). Non-extensive statistics solution to the cosmological lithium problem. The Astrophysical Journal, 834(2), article id 165.Google Scholar
  25. Iocco, F., Pato, M., & Bertone, G. (2015). Evidence for dark matter in the inner Milky Way. Nature Physics, 11, 245–248.CrossRefGoogle Scholar
  26. Johansson, I. (1975). A critique of Karl Popper’s methodology. Stockholm: Akademiförlaget.Google Scholar
  27. Katz, H., Lelli, F., McGaugh, S. S., et al. (2017). Testing feedback-modified dark matter haloes with galaxy rotation curves: Estimation of halo parameters and consistency with ΛCDM scaling relations. Monthly Notices of the Royal Astronomical Society, 466(2), 1648–1668.CrossRefGoogle Scholar
  28. Kelvin, B. (1904). Baltimore lectures on molecular dynamics and the wave theory of light. https://archive.org/details/baltimorelecture00kelviala. Accessed 4 Jan 2019.
  29. Keuth, H. (2005). The philosophy of Karl Popper. Cambridge: Cambridge University Press.Google Scholar
  30. Kim, S. Y., Peter, A. H. G., & Hargis, J. R. (2018). Missing satellites problem: Completeness corrections to the number of satellite galaxies in the Milky Way are consistent with cold dark matter predictions. Physical Review Letters, 121(21), article id 211302.Google Scholar
  31. Kuhn, T. (1977). The essential tension: Selected studies in scientific tradition and change. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  32. Lakatos, I. (1970). Falsification and the methodology of scientific research programs. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–196). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Lakatos, I. (1971). History of science and its rational reconstructions. In R. Buck & R. S. Cohen (Eds.), PSA 1970. Boston Studies in the Philosophy of Science (Vol. 8, pp. 91–136). Springer: Dordrecht.Google Scholar
  34. Landry, D., Bonamente, M., Giles, P., et al. (2013). Chandra measurements of a complete sample of x-ray luminous galaxy clusters: The gas mass fraction. Monthly Notices of Royal Astronomical Society, 433(4), 2790–2811.CrossRefGoogle Scholar
  35. Lelli, F., McGaugh, S. S., Schombert, J. M., et al. (2016). The relation between stellar and dynamical surface densities in the central regions of disk galaxies. The Astrophysical Journal Letters, 827, article id L19.Google Scholar
  36. Ludlow, A. D., et al. (2017). Mass-discrepancy acceleration relation: A natural outcome of galaxy formation in cold dark matter halos. Physical Review Letters, 118(16), article id 161103.Google Scholar
  37. McGaugh, S. S. (2004). The mass discrepancy-acceleration relation: Disk mass and the dark matter distribution. The Astrophysical Journal, 609(2), 652–666.CrossRefGoogle Scholar
  38. McGaugh, S. S. (2007). The halo by halo missing baryon problem. Proceedings of the International Astronomical Union, 3(S244), 136–145.CrossRefGoogle Scholar
  39. McGaugh, S. S., Lelli, F., & Schombert, J. M. (2016). Radial acceleration relation in rotationally supported galaxies. Physical Review Letters, 117(20), article id 201101.Google Scholar
  40. Merritt, D. (2017). Cosmology and convention. Studies in History and Philosophy of Modern Physics, 57, 41–52.CrossRefGoogle Scholar
  41. Milgrom, M. (1983). A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal, 270, 365–370.CrossRefGoogle Scholar
  42. Milgrom, M. (2016). Universal modified newtonian dynamics relation between the baryonic and “dynamical” central surface densities of disc galaxies. Physical Review Letters, 117(14), article id 141101.Google Scholar
  43. Moffat, J. W. (2006). Scalar-tensor-vector gravity theory. Journal of Cosmology and Astroparticle Physics, 03, 1–18.CrossRefGoogle Scholar
  44. Moore, B., et al. (1999). Dark matter substructure within galactic halos. The Astrophysical Journal, 524(1), L19–L22.CrossRefGoogle Scholar
  45. Natarajan, P., & Zhao, H. (2008). MOND plus classical neutrinos are not enough for cluster lensing. Monthly Notices of the Royal Astronomical Society, 389(1), 250–256.CrossRefGoogle Scholar
  46. Navarro, J. F., Frenk, C. S., & White, S. D. M. (1997). A universal density profile from hierarchical clustering. The Astrophysical Journal, 490(2), 493–508.CrossRefGoogle Scholar
  47. Navarro, J. F., et al. (2017). The origin of the mass discrepancy – acceleration relation in ΛCDM. Monthly Notices of the Royal Astronomical Society, 471(2), 1841–1848.CrossRefGoogle Scholar
  48. Nicastro, F., Elvis, M., Fiore, F., et al. (2005). Measured cosmological mass density in the WHIM: The solution to the ‘missing baryons’ problem. Advances in Space Research, 36(4), 721–726.CrossRefGoogle Scholar
  49. Ogiya, G., & Burkert, A. (2015). Re-examining the too-big-to-fail problem for dark matter haloes with central density cores. Monthly Notices of the Royal Astronomical Society, 446(3), 2363–2369.CrossRefGoogle Scholar
  50. Poincaré, H. (1902). La science et l’hypothèse. Paris: Ernest Flammarion.Google Scholar
  51. Poincaré, H. (1906). The milky way and the theory of gases. Popular Astronomy, 14, 475–488.Google Scholar
  52. Pointecouteau, E., Arnaud, M., & Pratt, G. W. (2005). The structural and scaling properties of nearby galaxy clusters. I. The universal mass profile. Astronomy and Astrophysics, 435(1), 1–7.CrossRefGoogle Scholar
  53. Pontzen, A., & Governato, F. (2014). Cold dark matter heats up. Nature, 506(7487), 171–178.CrossRefGoogle Scholar
  54. Popper, K. (1959). The logic of scientific discovery. New York: Basic Books.Google Scholar
  55. Postnikov, S., Dainotti, M. G., Hernandez, X., et al. (2014). Nonparameteric study of the evolution of the cosmological equation of state with SNeIa, BAO, and High-Redshift GRBs. The Astrophysical Journal, 783(2), article id 126.Google Scholar
  56. Profumo, S. (2017). An introduction to particle dark matter. London: World Scientific.CrossRefGoogle Scholar
  57. Read, J. I., & Erkal, D. (2018). Abundance matching with the mean star formation rate: There is no missing satellites problem in the milky way. arXiv:1807.07093.
  58. Sanders, R. H. (2010). The dark matter problem: A historical perspective. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  59. Sanders, R. H., & McGaugh, S. S. (2002). Modified Newtonian dynamics as an alternatives to dark matter. Annual Review of Astronomy and Astrophysics, 40, 263–317.CrossRefGoogle Scholar
  60. Secchi, A. (1877). L’Astronomia in Roma nel pontificato di Pio IX: memoria. Roma: Tipografia della Pace.Google Scholar
  61. Simon, J. D., & Geha, M. (2007). The kinematics of the ultra-faint milky way satellites: Solving the missing satellite problem. The Astrophysical Journal, 670(1), 313–331.CrossRefGoogle Scholar
  62. Spergel, D. N., & Steinhardt, P. J. (2000). Observational evidence for self-interacting cold dark matter. Physical Review Letters, 84(17), 3760–3763.CrossRefGoogle Scholar
  63. Stadel, J., Potter, D., Moore, B., et al. (2009). Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo. Monthly Notices of the Royal Astronomical Society, 398(1), L21–L25.CrossRefGoogle Scholar
  64. Staley, K. W. (2014). An introduction to the philosophy of science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Trippe, S. (2013). Can massive gravity explain the mass discrepancy acceleration relation of disk galaxies? Journal of the Korean Astronomical Society, 46(3), 133–140.CrossRefGoogle Scholar
  66. Tully, R. B., & Fisher, J. R. (1977). A new method of determining distances to galaxies. Astronomy and Astrophysics, 54(3), 661–673.Google Scholar
  67. Verlinde, E. (2017). Emergent gravity and the dark universe. SciPost Physics, 2, article id 016.Google Scholar
  68. Zel’dovich, Y. B. (1968). The cosmological constant and the theory of elementary particles. Soviet Physics Uspekhi, 11, 381–393.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Science and Environmental StudiesThe Education University of Hong KongTai PoHong Kong

Personalised recommendations