Advertisement

A Structured Argumentation Framework for Modeling Debates in the Formal Sciences

  • Marcos CramerEmail author
  • Jérémie Dauphin
Article

Abstract

Scientific research in the formal sciences comes in multiple degrees of formality: fully formal work; rigorous proofs that practitioners know to be formalizable in principle; and informal work like rough proof sketches and considerations about the advantages and disadvantages of various formal systems. This informal work includes informal and semi-formal debates between formal scientists, e.g. about the acceptability of foundational principles and proposed axiomatizations. In this paper, we propose to use the methodology of structured argumentation theory to produce a formal model of such informal and semi-formal debates in the formal sciences. For this purpose, we propose ASPIC-END, an adaptation of the structured argumentation framework ASPIC+ which can incorporate natural deduction style arguments and explanations. We illustrate the applicability of the framework to debates in the formal sciences by presenting a simple model of some arguments about proposed solutions to the Liar paradox, and by discussing a more extensive—but still preliminary—model of parts of the debate that mathematicians had about the Axiom of Choice in the early twentieth century.

Keywords

Argumentation theory Formal sciences Natural deduction Hypothetical reasoning Axiom of choice 

Notes

References

  1. Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation semantics. The Knowledge Engineering Review, 26(4), 365–410.CrossRefGoogle Scholar
  2. Beall, J., Glanzberg, M., & Ripley, D. (2016). Liar paradox. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/liar-paradox/.
  3. Beirlaen, M., Heyninck, J., & Straßer, C. (2017). Reasoning by cases in structured argumentation. Proceedings of SAC/KRR, 2017, 989–994.Google Scholar
  4. Beirlaen, M., Heyninck, J., & Straßer, C. (2018). A critical assessment of Pollock’s work on logic-based argumentation with suppositions. In Proceedings of the 17th international workshop on non-monotonic reasoning, 63–72.Google Scholar
  5. Benzmüller, C., Weber, L., & Woltzenlogel Paleo, B. (2017). Computer-assisted analysis of the Anderson-Hájek controversy. Logica Universalis, 11(1), 139–151.  https://doi.org/10.1007/s11787-017-0160-9, http://christoph-benzmueller.de/papers/J32.pdf. Accessed 31 May 2019.
  6. Benzmüller, C., & Woltzenlogel Paleo, B. (2016). The inconsistency in Gödel’s ontological argument: A success story for ai in metaphysics. In S. Kambhampati (Ed.), Proceedings of the twenty-fifth International Joint Conference of Artificial Intelligence (IJCAI-16) (Vol 1–3, pp. 936–942). AAAI Press. http://www.ijcai.org/Proceedings/16/Papers/137.pdf.
  7. Besnard, P., Garcia, A., Hunter, A., et al. (2014). Introduction to structured argumentation. Argument and Computation, 5(1), 1–4.CrossRefGoogle Scholar
  8. Caminada, M., & Amgoud, L. (2007). On the evaluation of argumentation formalisms. Artificial Intelligence, 171(5–6), 286–310.CrossRefGoogle Scholar
  9. Caminada, M., Modgil, S., & Oren, N. (2014). Preferences and unrestricted rebut. Computational Models of Argument (Proceedings of COMMA 2014), 209–220.  https://doi.org/10.3233/978-1-61499-436-7-209.
  10. Caminada, M. W. A., Carnielli, W. A., & Dunne, P. E. (2012). Semi-stable semantics. Journal of Logic and Computation, 22(5), 1207–1254.  https://doi.org/10.1093/logcom/exr033.CrossRefGoogle Scholar
  11. Cramer, M., & Dauphin, J. (2018). Technical online appendix to “A structured argumentation framework for modeling debates in the formal sciences”. http://orbilu.uni.lu/retrieve/56794/65813/appendix.pdf. Accessed 31 May 2019.
  12. Dauphin, J., & Cramer, M. (2017). ASPIC-END: structured argumentation with explanations and natural deduction. In E. Black, S. Modgil, & N. Oren (Eds.), Theory and applications of formal argumentation (4th International Workshop, TAFA 2017, Melbourne, VIC, Australia, August 19–20, 2017, Revised Selected Papers) (pp. 51–66). Cham (Switzerland): Springer.Google Scholar
  13. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–357.CrossRefGoogle Scholar
  14. Feferman, S. (1991). Reflecting on incompleteness. The Journal of Symbolic Logic, 56(1), 1–49.CrossRefGoogle Scholar
  15. Field, H. (2008). Saving truth from paradox. Oxford: Oxford University Press.CrossRefGoogle Scholar
  16. Fitelson, B., & Zalta, E. N. (2007). Steps toward a computational metaphysics. Journal of Philosophical Logic, 36(2), 227–247. http://www.jstor.org/stable/30226964. Accessed 31 May 2019.
  17. Hadamard, J., Baire, R., Lebesgue, H., et al. (1905). Cinq lettres sur la théorie des ensembles. Bulletin de la Société mathématique de France, 33, 261–273.CrossRefGoogle Scholar
  18. Harrison, J. (2009). HOL light: An overview. In S. Berghofer, T. Nipkow, C. Urban, et al. (Eds.), Theorem Proving in Higher Order Logics. TPHOLs 2009. Lecture Notes in Computer Science (Vol. 5674, pp. 60–66). Berlin/Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-03359-9_4.Google Scholar
  19. Modgil, S., & Prakken, H. (2013). A general account of argumentation with preferences. Artificial Intelligence, 195, 361–397.CrossRefGoogle Scholar
  20. Modgil, S., & Prakken, H. (2014). The ASPIC+ framework for structured argumentation: A tutorial. Argument and Computation, 5(1), 31–62.CrossRefGoogle Scholar
  21. Moore, G. (1982). Zermelo’s axiom of choice: Its origins, development, and influence. Studies in the history of mathematics and physical sciences. Berlin: Springer.CrossRefGoogle Scholar
  22. Nipkow, T., Paulson, L. C., & Wenzel, M. (2002). Isabelle/HOL: A proof assistant for higher-order logic (Vol. 2283). Berlin: Springer.CrossRefGoogle Scholar
  23. Peano, G. (1906). Additione. Revista de mathematica, 8, 143–157.Google Scholar
  24. Pollock, J. L. (1987). Defeasible reasoning. Cognitive Science, 11(4), 481–518.CrossRefGoogle Scholar
  25. Pollock, J. L. (1995). Cognitive carpentry: A blueprint for how to build a person. New York: The MIT Press.Google Scholar
  26. Prakken, H. (2010). An abstract framework for argumentation with structured arguments. Argument and Computation, 1(2), 93–124.CrossRefGoogle Scholar
  27. Reinhardt, W. N. (1986). Some remarks on extending and interpreting theories with a partial predicate for truth. Journal of Philosophical Logic, 15(2), 219–251.CrossRefGoogle Scholar
  28. Šešelja, D., & Straßer, C. (2013). Abstract argumentation and explanation applied to scientific debates. Synthese, 190(12), 2195–2217.CrossRefGoogle Scholar
  29. Zalta, E. (2012). Abstract objects: An introduction to axiomatic metaphysics. Dordrecht: Synthese Library, Springer.Google Scholar
  30. Zermelo, E. (1904). Beweis, daß jede Menge wohlgeordnet werden kann. Mathematische Annalen, 59(4), 514–516.CrossRefGoogle Scholar
  31. Zermelo, E. (1908). Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische Annalen, 65(1), 107–128.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.International Center for Computational LogicTU DresdenDresdenGermany
  2. 2.University of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations