Advertisement

The Epistemic Indispensability Argument

  • Cristian SotoEmail author
Article
  • 26 Downloads

Abstract

This article elaborates the epistemic indispensability argument, which fully embraces the epistemic contribution of mathematics to science, but rejects the contention that such a contribution is a reason for granting reality to mathematicalia. Section 1 introduces the distinction between ontological and epistemic readings of the indispensability argument. Section 2 outlines some of the main flaws of the first premise of the ontological reading. Section 3 advances the epistemic indispensability argument in view of both applied and pure mathematics. And Sect. 4 makes a case for the epistemic approach, which firstly calls into question the appeal to inference to the best explanation in the defense of the indispensability claim; secondly, distinguishes between mathematical and physical posits; and thirdly, argues that even though some may think that inference to the best explanation works in the postulation of physical posits, no similar considerations are available for postulating mathematicalia.

Keywords

Indispensability argument Epistemic approach Mathematics Science Inference to the best explanation Ontology 

Notes

Acknowledgements

This article is a result of the governmental funded research Grant FONDECYT de Iniciación, No. 11160324, “The Physico-Mathematical Structure of Scientific Laws: On the Roles of Mathematics, Models, Measurements, and Metaphysics in the Construction of Laws in Physics,” CONICYT, Chile.

References

  1. Arabatzis, T. (2006). Representing electrons. A biographical approach to theoretical entities. Chicago and London: The University of Chicago Press.Google Scholar
  2. Azzouni, J. (1997). Thick epistemic access: Distinguishing the mathematical from the empirical. The Journal of Philosophy, 94(9), 472–484.Google Scholar
  3. Azzouni, J. (2004). Deflating existential consequence. New York: Oxford University Press.CrossRefGoogle Scholar
  4. Baker, A. (2005). Are there genuine mathematical explanations of physical phenomena? Mind, 114(454), 223–238.CrossRefGoogle Scholar
  5. Baker, A. (2009). Mathematical explanation in science. British Journal for the Philosophy of Science, 60(3), 611–633.CrossRefGoogle Scholar
  6. Baker, A., & Colyvan, M. (2011). Indexing and mathematical explanation. Philosophia Mathematica, 19(3), 323–334.CrossRefGoogle Scholar
  7. Balaguer, M. (1998). Platonism and anti-platonism in mathematics. Oxford: Oxford University Press.Google Scholar
  8. Bangu, S. (2008). Inference to the best explanation and mathematical realism. Synthese, 160(1), 13–20.CrossRefGoogle Scholar
  9. Bangu, S. (2012). The applicability of mathematics in science: Indispensability and ontology. London: Palgrave Macmillan.Google Scholar
  10. Bigelow, J. (1988). The reality of numbers. A physicalist’s philosophy of mathematics. Oxford: Clarendon Press.Google Scholar
  11. Bueno, O. (2005). Dirac and the dispensability of mathematics. Studies in History and Philosophy of Modern Physics, 36(3), 465–490.CrossRefGoogle Scholar
  12. Bueno, O. (2009). Mathematical fictionalism. In O. Bueno, & O. Linnebo (Eds.), New waves in the philosophy of mathematics (pp. 59–79). New York: Palgrave Macmillan.CrossRefGoogle Scholar
  13. Bueno, O. (2016). An anti-realist application of the application of mathematics. Philosophical Studies, 173(10), 2591–2604.  https://doi.org/10.1007/s11098-016-0670-y.CrossRefGoogle Scholar
  14. Bueno, O., & Colyvan, M. (2011). An inferential conception of the application of mathematics. Nous, 45(2), 345–374.CrossRefGoogle Scholar
  15. Bueno, O., & French, S. (2018). Applying mathematics: Immersion, inference, interpretation. Oxford: Oxford University Press.Google Scholar
  16. Clowe, D., Bradac, M., Gonzalez, A. H., Marketevich, M., Randall, S. W., & Zaritsky, D. (2006). A direct empirical proof of the existence of dark matter. The Astrophysical Journal Letters, 648(2), L109–L113.CrossRefGoogle Scholar
  17. Colyvan, M. (1999). Confirmation theory and indispensability. Philosophical Studies, 96(1), 1–19.CrossRefGoogle Scholar
  18. Colyvan, M. (2001). The indispensability of mathematics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Colyvan, M. (2002). Mathematics and aesthetics considerations in science. Mind, 111(441), 69–74.CrossRefGoogle Scholar
  20. Colyvan, M. (2006). Scientific realism and mathematical nominalism: A marriage made in hell. In C. Cheyne, & J. Worrall (Eds.), Rationality and reality: Conversations with Alan Musgrave (pp. 225–237). Dordrecht: Springer.CrossRefGoogle Scholar
  21. Colyvan, M. (2012). An introduction to the philosophy of mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Daly, C., & Langford, S. (2009). Mathematical explanation and indispensability arguments. The Philosophical Quarterly, 59(237), 641–658.CrossRefGoogle Scholar
  23. Dyson, F. (1962). Mathematics in the physical sciences. Scientific American, 211(3), 128–146.CrossRefGoogle Scholar
  24. Field, H. (1980). Science without numbers. A defence of nominalism. Princeton: Princeton University Press.Google Scholar
  25. Field, H. (1989). Realism, mathematics and modality. New York: Basil Blackwell.Google Scholar
  26. Franklin, J. (2014). An aristotelian realist philosophy of mathematics. Mathematics as the science of quantity and structure. London: Palgrave Macmillan.Google Scholar
  27. Freese, K. (2006). The dark side of the universe. Nuclear Instruments and Methods in Physics Research, A, 559(2), 337–340.CrossRefGoogle Scholar
  28. Lange, M. (2002). An introduction to the philosophy of physics: Locality, fields, energy, and mass. New York: Blackwell.Google Scholar
  29. Leng, M. (2002). What’s wrong with indispensability? (Or, the case for recreational mathematics). Synthese, 131(3), 395–417.CrossRefGoogle Scholar
  30. Leng, M. (2010). Mathematics and reality. Oxford: Oxford University Press.CrossRefGoogle Scholar
  31. Liggins, D. (2016). Grounding and the indispensability argument. Synthese, 193(2), 531–548.  https://doi.org/10.1007/s11229-014-0478-2.CrossRefGoogle Scholar
  32. Maddy, P. (1990). Realism in mathematics. Oxford: Oxford University Press.Google Scholar
  33. Maddy, P. (1992). Indispensability and practice. The Journal of Philosophy, 89(6), 275–289.CrossRefGoogle Scholar
  34. Maddy, P. (1995). Naturalism and ontology. Philosophia Mathematica, 3(3), 248–270.CrossRefGoogle Scholar
  35. Maddy, P. (1997). Naturalism in mathematics. Oxford: Oxford University Press.Google Scholar
  36. Melia, J. (2000). Weaseling away the indispensability argument. Mind, 109(435), 435–479.CrossRefGoogle Scholar
  37. Melia, J. (2002). Response to Colyvan. Mind, 111(441), 75–79.CrossRefGoogle Scholar
  38. Morrison, M. (2015). Reconstructing reality. Models, mathematics, and simulations. Oxford: Oxford University Press.CrossRefGoogle Scholar
  39. Musgrave, A. (1986). Arithmetical platonism: Is Wright wrong or must Field yield? In M. Fricke (Ed.), Essays in honour of Bob Durrant (pp. 90–110). Dunedin: Otago University Philosophy Department.Google Scholar
  40. Panza, M., & Sereni, A. (2016). The varieties of indispensability arguments. Synthese, 193(2), 469–516.  https://doi.org/10.1007/s11229-015-0977-9.CrossRefGoogle Scholar
  41. Pincock, C. (2012). Mathematics and scientific representation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  42. Psillos, S. (2012). Anti-nominalistic scientific realism: A defence. In A. Bird, B. Ellis, & H. Sankey (Eds.), Properties, powers, and structures. Issues in the metaphysics of realism (pp. 63–80). New York and London: Routledge.Google Scholar
  43. Putnam, H. (1971). Philosophy of logic. In H. Putnam (Ed.), Mathematics, matter and method: Philosophical papers (Vol. 1, pp. 323–357). Cambridge: Cambridge University Press.Google Scholar
  44. Quine, W. V. O. (1948). On what there is. The Review of Metaphysics, 2(5), 21–38.Google Scholar
  45. Quine, W. V. O. (1951). Two dogmas of empiricism. The Philosophical Review, 60(1), 20–43.CrossRefGoogle Scholar
  46. Quine, W. V. O. (1981). Theories and things. Cambridge, MA: Harvard University Press.Google Scholar
  47. Quine, W. V. O. (2004). Quintessence. In R. F. Gibson Jr. (Ed.), Basic readings from the philosophy of W. V. Quine. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
  48. Resnik, M. D. (1997). Mathematics as a science of patterns. Oxford: Clarendon Press.Google Scholar
  49. Saatsi, J. (2011). The enhanced indispensability argument: Representational versus explanatory role of mathematics in science. British Journal for the Philosophy of Science, 62(1), 143–154.CrossRefGoogle Scholar
  50. Saatsi, J. (2016). On the ‘indiepensable explanatory role’ of mathematics. Mind, 125(500), 1045–1070.CrossRefGoogle Scholar
  51. Sober, E. (1993). Mathematics and indispensability. The Philosophical Review, 102(1), 35–57.CrossRefGoogle Scholar
  52. Steiner, M. (1995). The applicabilities of mathematics. Philosophia Mathematica, 3(2), 129–156.CrossRefGoogle Scholar
  53. Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Cambridge, MA: Harvard University Press.Google Scholar
  54. Tegmark, M. (2014). Our mathematical universe. My quest for the ultimate nature of reality. London: Penguin Books.Google Scholar
  55. Weinberg, S. (1993). Dreams of a final theory. London: Vintage.CrossRefGoogle Scholar
  56. Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics, 13, 1–14.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de FilosofíaUniversidad de ChileÑuñoaChile

Personalised recommendations