Advertisement

Reconstructing Probabilistic Realism: Re-enacting Syntactical Structures

  • Majid Davoody Beni
Article

Abstract

Probabilistic realism and syntactical positivism were two among outdated theories that Feigl criticised on account of their semantical poverty. In this paper, I argue that a refined version of probabilistic realism, which relies on what Feigl specified as the pragmatic description of the symbolic behaviour of scientists’ estimations and foresight, is defendable. This version of statistical realism does not need to make the plausibility of realist thesis dependent on the conventional acceptance of a constructed semantic metalanguage. I shall rely on the Prediction Error Minimisation theory (PEM) to support my probabilistic version of realism with a scientifically-informed and naturalistically plausible statistical account of the theories-world relationship which has a pragmatic ring to it.

Keywords

Probabilistic realism Predictive coding Free energy principle Semantics Pragmatics 

Notes

Acknowledgements

I am greatly indebted to the reviewers and guest editors of this journal for their constructive comments. The debt is gratefully acknowledged.

References

  1. Allen, M., & Friston, K. J. (2016). From cognitivism to autopoiesis: Towards a computational framework for the embodied mind. Synthese.  https://doi.org/10.1007/s11229-016-1288-5.CrossRefGoogle Scholar
  2. Beni, M. D. (2017). Structural realism, metaphysical unification, and the ontology and epistemology of patterns. International Studies in the Philosophy of Science, 31(3), 285–300.  https://doi.org/10.1080/02698595.2018.1463691.CrossRefGoogle Scholar
  3. Beni, M. D. (2018a). Commentary: The predictive processing paradigm has roots in kant. Frontiers in Systems Neuroscience, 11, 98.  https://doi.org/10.3389/FNSYS.2017.00098.CrossRefGoogle Scholar
  4. Beni, M. D. (2018b). Syntactical informational structural realism. Minds and Machines.  https://doi.org/10.1007/s11023-018-9463-8.CrossRefGoogle Scholar
  5. Beni, M. D. (2018c). The reward of unification: A realist reading of the predictive processing theory. New Ideas in Psychology, 48(January), 21–26.  https://doi.org/10.1016/j.newideapsych.2017.10.001.CrossRefGoogle Scholar
  6. Bitbol, M., & Gallagher, S. (2018). The free energy principle and autopoiesis: Comment on ‘Answering Schrödinger’s Question: A Free-Energy Formulation’ by Maxwell James Désormeau Ramstead, Paul Benjamin Badcock, Karl John Friston. Physics of Life Reviews.  https://doi.org/10.1016/J.PLREV.2017.12.011.CrossRefGoogle Scholar
  7. Blakemore, S.-J., Wolpert, D. M., & Frith, C. D. (1999). The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. Neuroimage, 10, 448–459.CrossRefGoogle Scholar
  8. Bruineberg, J., Kiverstein, J., & Rietveld, E. (2016). The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese.  https://doi.org/10.1007/s11229-016-1239-1.CrossRefGoogle Scholar
  9. Bueno, O., French, S., & Ladyman, J. (2012). Models and structures: Phenomenological and partial. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 43(1), 43–46.  https://doi.org/10.1016/j.shpsb.2011.12.001.CrossRefGoogle Scholar
  10. Carnap, R. (1928). Der Logische Aufbau Der Welt. Hamburg: Springer.Google Scholar
  11. Carnap, R. (1937). The logical syntax of language (A. Smeaton, Trans.). London: Kegan Paul Trench, Trubner & Co.Google Scholar
  12. Carnap, R. (1942). Introduction to semantics: And formalization of logic. Cambridge, Mass: Harvard University Press.Google Scholar
  13. Carnap, R. (1950). Empiricism, semantics, and ontology. Revue Internationale de Philosophie, 4(1950), 20–40.Google Scholar
  14. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(03), 181–204.  https://doi.org/10.1017/s0140525x12000477.CrossRefGoogle Scholar
  15. Clark, A. (2015). Radical predictive processing. The Southern Journal of Philosophy, 53(S1), 3–27.  https://doi.org/10.1111/sjp.12120.CrossRefGoogle Scholar
  16. Clark, A. (2016a). Surfing uncertainty. New York: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780190217013.001.0001.CrossRefGoogle Scholar
  17. Clark, A. (2016b). Busting out: Predictive brains, embodied minds, and the puzzle of the evidentiary veil. Noûs.  https://doi.org/10.1111/nous.12140.CrossRefGoogle Scholar
  18. Creath, R. (1990). The unimportance of semantics. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1990(2), 405–416.  https://doi.org/10.1086/psaprocbienmeetp.1990.2.193084.CrossRefGoogle Scholar
  19. Feigl, H. (1950). Existential hypotheses. Realistic versus phenomenalistic interpretations. Philosophy of Science, 17(1), 35–62.CrossRefGoogle Scholar
  20. Feigl, H. (1981). Logical reconstruction, realism and pure semiotic. In Inquiries and provocations (pp. 224–36). Dordrecht: Springer Netherlands.  https://doi.org/10.1007/978-94-010-9426-9_13.CrossRefGoogle Scholar
  21. Fitelson, B., & Sober, E. (1998). Plantinga’s probability arguments against evolutionary naturalism. Pacific Philosophical Quarterly, 79(2), 115–129.  https://doi.org/10.1111/1468-0114.00053.CrossRefGoogle Scholar
  22. French, S. (2015). (Structural) realism and its representational vehicles. Synthese, 194(9), 3311–3326.  https://doi.org/10.1007/s11229-015-0879-x.CrossRefGoogle Scholar
  23. French, S., & Ladyman, J. (1999). Reinflating the semantic approach. International Studies in the Philosophy of Science, 13(2), 103–121.  https://doi.org/10.1080/02698599908573612.CrossRefGoogle Scholar
  24. Frigg, R. (2010). Models and fiction. Synthese, 172(2), 251–268.  https://doi.org/10.1007/s11229-009-9505-0.CrossRefGoogle Scholar
  25. Friston, K. J. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.  https://doi.org/10.1038/nrn2787.CrossRefGoogle Scholar
  26. Friston, K. J. (2012). Predictive coding, precision and synchrony. Cognitive Neuroscience, 3(3–4), 238–239.  https://doi.org/10.1080/17588928.2012.691277.CrossRefGoogle Scholar
  27. Friston, K. J. (2013). Active inference and free energy. Behavioral and Brain Sciences, 36(03), 212–213.  https://doi.org/10.1017/s0140525x12002142.CrossRefGoogle Scholar
  28. Friston, K. J., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: A free-energy formulation. Biological Cybernetics, 102(3), 227–260.  https://doi.org/10.1007/s00422-010-0364-z.CrossRefGoogle Scholar
  29. Friston, K. J., & Price, C. J. (2001). Generative models, brain function and neuroimaging. Scandinavian Journal of Psychology, 42(3), 167–177.CrossRefGoogle Scholar
  30. Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159(3), 417–458.  https://doi.org/10.1007/s11229-007-9237-y.CrossRefGoogle Scholar
  31. Frith, C. D. (2007). Making up the mind: How the brain creates our mental world. New York: Blackwell Pub.Google Scholar
  32. Gallagher, S., & Allen, M. (2016). Active inference, enactivism and the hermeneutics of social cognition. Synthese.  https://doi.org/10.1007/s11229-016-1269-8.CrossRefGoogle Scholar
  33. Gibson, J. J. (2015). The ecological approach to visual perception. London: Taylor & Francis.  https://doi.org/10.2307/429816.CrossRefGoogle Scholar
  34. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  35. Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742–752.  https://doi.org/10.1086/425063.CrossRefGoogle Scholar
  36. Godfrey-Smith, P. (2009). Models and fictions in science. Philosophical Studies, 143(1), 101–116.  https://doi.org/10.1007/s11098-008-9313-2.CrossRefGoogle Scholar
  37. Heft, H. (2008). Ecological psychology in context: James Gibson, Roger Barker, and the Legacy of William James’s Radical Empiricism. Brighton: Psychology Press.Google Scholar
  38. Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780199682737.001.0001.CrossRefGoogle Scholar
  39. Hohwy, J. (2014). The self-evidencing brain. Noûs, 50(2), 259–285.  https://doi.org/10.1111/nous.12062.CrossRefGoogle Scholar
  40. Kolossa, A., Kopp, B., & Fingscheidt, T. (2015). A computational analysis of the neural bases of Bayesian inference. NeuroImage, 106, 222–237.  https://doi.org/10.1016/j.neuroimage.2014.11.007.CrossRefGoogle Scholar
  41. König, P., Wilming, N., Kaspar, K., Nagel, S. K., & Onat, S. (2013). Predictions in the light of your own action repertoire as a general computational principle. The Behavioral and Brain Sciences, 36(3), 219–220.  https://doi.org/10.1017/S0140525X12002294.CrossRefGoogle Scholar
  42. Laudan, L. (1981). A confutation of convergent realism. Philosophy of Science, 48(1), 19–49.  https://doi.org/10.1086/288975.CrossRefGoogle Scholar
  43. Maxwell, G. (1970). Theories, perception and structural realism. In R. Colodny (Ed.), The nature and function of scientific theories (pp. 3–34). Pittsburgh: University of Pittsburgh.Google Scholar
  44. Mazer, J. A., & Gallant, J. L. (2003). Goal-related activity in V4 during free viewing visual search: Evidence for a ventral stream visual salience map. Neuron, 40(6), 1241–1250.  https://doi.org/10.1016/S0896-6273(03)00764-5.CrossRefGoogle Scholar
  45. Moore, T., Armstrong, K. M., & Fallah, M. (2003). Visuomotor origins of covert spatial attention. Neuron, 40(4), 671–683.CrossRefGoogle Scholar
  46. Morris, C. (1963). Prgamatism and logical empiricism. In P. A. Schlipp (Ed.), The Philosophy of Rudolf Carnap, Volume 11 (Library of Living Philosophers) (pp. 87–99). La Salle: Open Court.Google Scholar
  47. Neuber, M. (2017). Feigl, Sellars, and the Idea of a ‘Pure Pragmatics’ (pp. 125–137). New York: Springer.  https://doi.org/10.1007/978-3-319-50730-9_7.CrossRefGoogle Scholar
  48. Niell, C. M., & Stryker, M. P. (2010). Modulation of visual responses by behavioral state in mouse visual cortex. Neuron, 65(4), 472–479.  https://doi.org/10.1016/j.neuron.2010.01.033.CrossRefGoogle Scholar
  49. Pezzulo, G. (2012). An active inference view of cognitive control. Frontiers in Psychology, 3, 478.  https://doi.org/10.3389/fpsyg.2012.00478.CrossRefGoogle Scholar
  50. Pezzulo, G., Rigoli, F., & Friston, K. J. (2015). Active inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134, 17–35.  https://doi.org/10.1016/j.pneurobio.2015.09.001.CrossRefGoogle Scholar
  51. Piccinini, G. (2015). Physical computation. Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780199658855.001.0001.CrossRefGoogle Scholar
  52. Psillos, S. (1999). Scientific realism: How science tracks truth. New York: Routledge.Google Scholar
  53. Psillos, S. (2000). Carnap, the Ramsey-sentence and realistic empiricism. Erkenntnis, 52(2), 253–279.  https://doi.org/10.1023/A:1005589117656.CrossRefGoogle Scholar
  54. Putnam, H. (1975). Mathematics, matter, and method. Cambridge: Cambridge University Press.Google Scholar
  55. Quine, W. V. (1966). Truth by convention. In The ways of paradox, and other essays. Harvard University Press.  https://doi.org/10.2307/2105696.CrossRefGoogle Scholar
  56. Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.  https://doi.org/10.1038/4580.CrossRefGoogle Scholar
  57. Reichenbach, H. (2006). Experience and prediction: An analysis of the foundations and the structure of knowledge. Notre Dame: University of Notre Dame Press.Google Scholar
  58. Scarantino, A., & Piccinini, G. (2010). Information without Truth. Metaphilosophy, 41(3), 313–330.  https://doi.org/10.1111/j.1467-9973.2010.01632.x.CrossRefGoogle Scholar
  59. Sellars, R. W. (1922). Evolutionary naturalism. The Journal of Philosophy. Chicago: Open Court.Google Scholar
  60. Sober, E. (2011). Reichenbach’s cubical universe and the problem of the external world. Synthese, 181(1), 3–21.  https://doi.org/10.1007/s11229-009-9593-x.CrossRefGoogle Scholar
  61. Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society of London B: Biological Sciences, 216(1205), 427–459.CrossRefGoogle Scholar
  62. Suppes, P. (1962). Models of data. In Logic, methodology, and philosophy of science: Proceedings of 1960 international congress (pp. 252–61). Stanford: Stanford University Press.Google Scholar
  63. Suppes, P. (1967). What is a scientific theory? In S. Morgenbesser (Ed.), Philosophy of science today (pp. 55–67). New York: Basic Books.Google Scholar
  64. Tarski, A. (1944). The semantic conception of truth: And the foundations of semantics. Philosophy and Phenomenological Research, 4(3), 341.  https://doi.org/10.2307/2102968.CrossRefGoogle Scholar
  65. Tarski, A. (1956). The concept of truth in formalized languages. Logic, Semantics, Metamathematics, 6(37), 1–3.  https://doi.org/10.2307/2022668.CrossRefGoogle Scholar
  66. Trappenberg, T., & Hollensen, P. (2013). Sparse coding and challenges for Bayesian models of the brain. Behavioral and Brain Sciences, 36(03), 232–233.  https://doi.org/10.1017/S0140525X12002300.CrossRefGoogle Scholar
  67. Uebel, T. (2013). Pragmatics in Carnap and Morris and the Bipartite Metatheory Conception. Erkenntnis, 78(3), 523–546.  https://doi.org/10.1007/s10670-011-9352-5.CrossRefGoogle Scholar
  68. Ungerleider, S. K., Leslie, G., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23(1), 315–341.  https://doi.org/10.1146/annurev.neuro.23.1.315.CrossRefGoogle Scholar
  69. van Fraassen, B. C. (1980). The scientific image. Oxford: Oxford University Press.  https://doi.org/10.1093/0198244274.001.0001.CrossRefGoogle Scholar
  70. van Fraassen, B. C. (1989). Laws and symmetry. Oxford: Oxford University Press.  https://doi.org/10.1093/0198248601.001.0001.CrossRefGoogle Scholar
  71. Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge: MIT Press.Google Scholar
  72. Weisberg, M. (2013). Simulation and similarity using models to understand the world. Oxford: Oxford University Press.CrossRefGoogle Scholar
  73. Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.Google Scholar
  74. Woodward, J. (2007a). Causation with a human face. In H. Price & R. Corry (Eds.), Causation, physics, and the constitution of reality: Russell’s Republic revisited (pp. 66–106). Oxford: Clarendon Press.Google Scholar
  75. Woodward, J. (2007b). Interventionist theories of causation in psychological perspective. In A. Gopnik & L. Schulz (Eds.), Causal learning: Psychology, philosophy and computation (pp. 19–36). New York: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780195176803.003.0002.CrossRefGoogle Scholar
  76. Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43(1–2), 99–124.  https://doi.org/10.1111/j.1746-8361.1989.tb00933.x.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Philosophy of Science Group, Department of Management, Science and TechnologyAmirkabir University of TechnologyTehranIran

Personalised recommendations