Advertisement

Reinhard Kahle and Michael Rathjen (eds.): Gentzen’s Centenary. The Quest for Consistency

Springer, Berlin, Heidelberg et al., 2015, 561 pp, Softcover $109.99, ISBN: 9783319101033
  • David Binder
Book Review

Background

As a response to the crisis in the foundations of mathematics at the beginning of the twentieth century David Hilbert formulated a research program, later called “Hilbert’s program”, to provide a secure foundation for mathematics. To this end Hilbert had summoned Paul Bernays as an extraordinary professor to Göttingen and gave him the task to oversee the development of logic and foundations of mathematics. A central element of that program was supposed to be a finitary proof of the consistency of mathematics; that such a proof is infeasible has been shown in 1931 by Gödel’s second incompleteness theorem. It was among the group of mathematicians working on foundations in Göttingen that Gerhard Gentzen (1909–1945) found his vocation to further the development of metamathematics and logic. Bernays was the supervisor of his doctoral dissertation which he finished in May 1933, 1 month after Bernays was forced to flee to Switzerland due to his Jewish descent.1

Gerhard Gentzen made...

References

  1. Gentzen, G. (1934–1935). Untersuchungen über das logische Schließen I and II. Mathematische Zeitschrift, 39(2), 176–210 and 39(3), 405–431.Google Scholar
  2. Gentzen, G. (1936). Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112, 493–565.CrossRefGoogle Scholar
  3. Gentzen, G. (1938). Neue Fassung des Widerspruchfreiheitsbeweises für die reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, 4, 19–44.Google Scholar
  4. Gentzen, G. (1943). Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Mathematische Annalen, 119, 140–161.CrossRefGoogle Scholar
  5. Gentzen, G. (1974). Der erste Widerspruchfreiheitsbeweis für die klassische Zahlentheorie. Archiv für mathematische Logik und Grundlagenforschung, 16, 97–118.CrossRefGoogle Scholar
  6. Menzler-Trott, E. (2007). Logic’s lost genius: The life of Gerhard Gentzen. Providence: American Mathematical Society/London Mathematical Society.Google Scholar
  7. Troelstra, A., & Schwichtenberg, H. (2000). Basic proof theory (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. von Plato, J. (2017). Saved from the cellar. Gerhard Gentzen’s shorthand notes on logic and foundations of mathematics. Dordrecht: Springer.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TübingenTübingenGermany

Personalised recommendations