No-Go Theorems and the Foundations of Quantum Physics

  • Andrea Oldofredi


In the history of quantum physics several no-go theorems have been proved, and many of them have played a central role in the development of the theory, such as Bell’s or the Kochen–Specker theorem. A recent paper by F. Laudisa has raised reasonable doubts concerning the strategy followed in proving some of these results, since they rely on the standard framework of quantum mechanics, a theory that presents several ontological problems. The aim of this paper is twofold: on the one hand, I intend to reinforce Laudisa’s methodological point by critically discussing Malament’s theorem in the context of the philosophical foundation of quantum field theory; secondly, I rehabilitate Gisin’s theorem showing that Laudisa’s concerns do not apply to it.


No-go theorems Quantum mechanics Quantum field theory Gisin’s theorem Malament’s theorem 



I would like to thank Federico Laudisa for his comments on the previous draft of this paper. I am grateful to the Swiss National Science Foundation for financial support (Grant No. 105212-175971).


  1. Baker, D. J. (2009). Against field interpretations of quantum field theory. British Journal for the Philosophy of Science, 60, 585–609.CrossRefGoogle Scholar
  2. Barrett, J. A. (2002). The nature of measurement records in relativistic quantum field theory. In M. Kuhlmann, H. Lyre, & A. Wayne (Eds.), Ontological aspects of quantum field theory (pp. 165–180). Singapore: World Scientific.CrossRefGoogle Scholar
  3. Barrett, J. A. (2014). Entanglement and disentanglement in relativistic quantum mechanics. Studies in History and Philosophy of Modern Physics, 48, 168–174.CrossRefGoogle Scholar
  4. Beck, C., Myrvold, W., Tumulka, R., & Oldofredi, A. (2014). Physical meaning of Malament’s theorem on the position operators in relativistic quantum theory. Unpublished manuscript, pp. 1–11.Google Scholar
  5. Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics, 1(3), 195–200.CrossRefGoogle Scholar
  6. Bell, J. S. (1975). The theory of local beables. TH 2053-CERN, pp. 1–14.Google Scholar
  7. Bell, J. S. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.Google Scholar
  8. Bohm, D. (1953). Comments on an article of Takabayasi concerning the formulation of quantum mechanics with classical pictures. Progress of Theoretical Physics, 9(3), 273–287.CrossRefGoogle Scholar
  9. Bricmont, J. (2016). Making sense of quantum mechanics. Berlin: Springer.CrossRefGoogle Scholar
  10. Colin, S., & Struyve, W. (2007). A Dirac sea pilot-wave model for quantum field theory. Journal of Physics A, 40(26), 7309–7341.CrossRefGoogle Scholar
  11. Cowan, C., & Tumulka, R. (2016). Epistemology of wave function collapse in quantum physics. The British Journal for the Philosophy of Science, 67(2), 405–434.CrossRefGoogle Scholar
  12. Daumer, M., Dürr, D., Goldstein, S., & Zanghì, N. (1996). Naive realism about operators. Erkenntnis, 45, 379–397.Google Scholar
  13. Dewdney, C., & Horton, G. (2002). Relativistically invariant extension of the de Broglie–Bohm theory of quantum mechanics. Journal of Physics A: Mathematical and General, 35, 10117–10127.CrossRefGoogle Scholar
  14. Dürr, D., Goldstein, S., Norsen, T., Struyve, W., & Zanghì, N. (2013). Can Bohmian mechanics be made relativistic? Proceedings of the Royal Society A, 470(2162), 20130,699.CrossRefGoogle Scholar
  15. Dürr, D., Goldstein, S., Tumulka, R., & Zanghì, N. (2004). Bohmian mechanics and quantum field theory. Physical Review Letters, 93, 090,402.CrossRefGoogle Scholar
  16. Dürr, D., Goldstein, S., Tumulka, R., & Zanghì, N. (2005). Bell-type quantum field theories. Journal of Physics A: Mathematical and General, 38(4), R1–R43. Scholar
  17. Dürr, D., Goldstein, S., & Zanghì, N. (2004). Quantum equilibrium and the role of operators as observables in quantum theory. Journal of Statistical Physics, 116, 959–1055.CrossRefGoogle Scholar
  18. Dürr, D., Goldstein, S., & Zanghì, N. (2013). Quantum physics without quantum philosophy. Berlin: Springer.CrossRefGoogle Scholar
  19. Dürr, D., & Teufel, S. (2009). Bohmian mechanics: The physics and mathematics of quantum theory. Berlin: Springer.Google Scholar
  20. Fraser, D. (2006). Haag’s theorem and its implications for the foundations of quantum field theory. Erkenntnis, 64, 305–344.CrossRefGoogle Scholar
  21. Fraser, D., & Earman, J. (2008). The fate of ‘particles’ in quantum field theories with interactions. Studies in History and Philosophy of Modern Physics, 38, 841–859.CrossRefGoogle Scholar
  22. Gisin, N. (2011). Impossibility of covariant deterministic nonlocal hidden variable extensions of quantum theory. Physical Review A, 83(2), 020,102(R).CrossRefGoogle Scholar
  23. Halvorson, H., & Clifton, R. K. (2002). No place for particles in relativistic quantum theories? Philosophy of Science, 69, 1–28.CrossRefGoogle Scholar
  24. Hiley, B., & Callaghan, R. E. (2010). The Clifford algebra approach to quantum mechanics B: The Dirac particle and its relation to the Bohm approach.
  25. Horton, G., & Dewdney, C. (2001). A non-local, Lorentz-invariant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories. Journal of Physics A: Mathematical and General, 34(46), 9871–9878.CrossRefGoogle Scholar
  26. Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17(1), 59–87.Google Scholar
  27. Laudisa, F. (2014). Against the ‘no-go’ philosophy of quantum mechanics. European Journal for Philosophy of Science, 4, 1–17.CrossRefGoogle Scholar
  28. MacKinnon, E. (2008). The standard model as a philosophical challenge. Philosophy of Science, 75, 447–457.CrossRefGoogle Scholar
  29. Malament, D. (1996). In defense of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles. In R. Clifton (Ed.), Perspectives on Quantum Reality (pp. 1–11). Dordrecht: Kluwer.Google Scholar
  30. Struyve, W. (2010). Pilot-wave approaches to quantum field theory. Journal of Physics: Conference Series, 306, 012,047.Google Scholar
  31. von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section de PhilosophieUniversité de LausanneLausanneSwitzerland

Personalised recommendations