Journal for General Philosophy of Science

, Volume 48, Issue 1, pp 97–124

On the Carroll–Chen Model

Article
  • 283 Downloads

Abstract

I argue that the Carroll–Chen cosmogonic model does not provide a plausible scientific explanation of the past hypothesis (the thesis that our universe began in an extremely low-entropy state). I suggest that this counts as a welcomed result for those who adopt a Mill–Ramsey–Lewis best systems account of laws and maintain that the past hypothesis is a brute fact that is a non-dynamical law.

Keywords

Entropy Past hypothesis Multiverse Laws of nature 

References

  1. Aguirre, A. Carroll, S. M., & Johnson, M. C. (2011). Out of equilibrium: Understanding cosmological evolution to lower-entropy states. arXiv:1108.0417v1.
  2. Albert, D. Z. (2000). Time and chance. Cambridge, MA: Harvard University Press.Google Scholar
  3. Albert, D. Z. (2010). Probability in the Everett picture. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, & reality (pp. 355–368). Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Albert, D. Z. (2015). After physics. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  5. Albrecht, A. (2004). Cosmic inflation and the arrow of time. In J. D. Barrow, P. C. W. Davies, & C. L. Harper Jr (Eds.), Science and ultimate reality: Quantum theory, cosmology, and complexity (pp. 363–401). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  6. Armstrong, D. M. (1983). What is a law of nature?. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Ashtekar, A. (2009). Singularity resolution in loop quantum cosmology: A brief overview. Journal of Physics: Conference Series, 189, 012003.Google Scholar
  8. Baker, D. (2007). Measurement outcomes and probability in Everettian quantum mechanics. Studies in History and Philosophy of Modern Physics, 38, 153–169.CrossRefGoogle Scholar
  9. Banks, T. (2000). Cosmological breaking of supersymmetry or little Lambda goes back to the future II. arXiv:hep-th/0007146v1.
  10. Banks, T. (2007). Entropy and initial conditions in cosmology. arXiv:hep-th/0701146v1.
  11. Banks, T. (2015). Holographic inflation and the low entropy of the early universe. arXiv:1501.02681v1 [hep-th].
  12. Belot, G. (2011). Geometric possibility. New York: Oxford University Press.CrossRefGoogle Scholar
  13. Boddy, K. K., Carroll, S. M., & Pollack, J. (2014). De sitter space without quantum fluctuations. arxiv:1405.0298v1 [hep-th].
  14. Borde, A., & Vilenkin, A. (1996). Singularities in inflationary cosmology: A review. International Journal of Modern Physics D, 5, 813–824.CrossRefGoogle Scholar
  15. Borde, A., & Vilenkin, A. (1997). Violation of the weak energy condition in inflating spacetimes. Physical Review D, 56, 717–723.CrossRefGoogle Scholar
  16. Borde, A., Guth, A. H., & Vilenkin, A. (2003). Inflationary spacetimes are incomplete in past directions. Physical Review Letters, 90, 151301.CrossRefGoogle Scholar
  17. Bousso, R. (1998). Proliferation of de Sitter space. Physical Review D, 58, 083511.CrossRefGoogle Scholar
  18. Bousso, R. (2000). Positive vacuum energy and the N-bound. Journal of High Energy Physics, 11(2000), 038.CrossRefGoogle Scholar
  19. Bousso, R. (2012). Vacuum structure and the arrow of time. Physical Review D, 86, 123509.CrossRefGoogle Scholar
  20. Bousso, R., DeWolfe, O., & Myers, R. C. (2003). Unbounded entropy in spacetimes with positive cosmological constant. Foundations of Physics, 33, 297–321.CrossRefGoogle Scholar
  21. Brand, M. (1977). Identity conditions for events. American Philosophical Quarterly, 14, 329–337.Google Scholar
  22. Bucher, M. (2002). A braneworld universe from colliding bubbles. Physics Letters B, 530, 1–9.CrossRefGoogle Scholar
  23. Bunzl, M. (1979). Causal overdetermination. The Journal of Philosophy, 76, 134–150.CrossRefGoogle Scholar
  24. Callender, C. (2004a). Measures, explanations and the past: Should ‘special’ initial conditions be explained? The British Journal for the Philosophy of Science, 55, 195–217.CrossRefGoogle Scholar
  25. Callender, C. (2004b). There is no puzzle about the low-entropy past. In C. Hitchcock (Ed.), Contemporary debates in philosophy of science (Contemporary Debates in Philosophy) (pp. 240–255). Malden: Blackwell.Google Scholar
  26. Callender, C. (2010). The past hypothesis meets gravity. In G. Ernst & A. Hüttemann (Eds.), Time, chance and reduction: Philosophical aspects of statistical mechanics (pp. 34–58). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Carroll, S. M. (2006). Is our universe natural? Nature, 440, 1132–1136.CrossRefGoogle Scholar
  28. Carroll, S. M. (2008a). The cosmic origins of time’s arrow. Scientific American, 298, 48–57.CrossRefGoogle Scholar
  29. Carroll, S. M. (2008b). What if time really exists? arXiv:0811.3772v1 [gr-qc].
  30. Carroll, S. M. (2010). From eternity to here: The quest for the ultimate theory of time. New York, NY: Dutton.Google Scholar
  31. Carroll, S. M. (2012). Does the universe need god? In J. B. Stump & A. G. Padgett (Eds.), The blackwell companion to science and christianity (pp. 185–197). Malden: Blackwell.CrossRefGoogle Scholar
  32. Carroll, S. M., & Chen, J. (2004). Spontaneous inflation and the origin of the arrow of time. arXiv:hep-th/0410270v1.
  33. Carroll, S. M., & Chen, J. (2005). Does inflation provide natural initial conditions for the universe. General Relativity and Gravitation, 37, 1671–1674.CrossRefGoogle Scholar
  34. Carroll, S. M., & Tam, H. (2010). Unitary evolution and cosmological fine-tuning. arXiv:1007.1417v1 [hep-th].
  35. Carroll, S. M., Johnson, M. C., & Randall, L. (2009). Dynamical compactification from de Sitter space. Journal of High Energy Physics, 11(2009), 094.CrossRefGoogle Scholar
  36. Cartwright, N., Alexandrova, A., Efstathiou, S., Hamilton, A., & Muntean, I. (2005). Laws. In F. Jackson & M. Smith (Eds.), The oxford handbook of contemporary philosophy (pp. 792–818). New York: Oxford University Press.Google Scholar
  37. Chisholm, R. M. (1990). Events without times an essay on ontology. Noûs, 24, 413–427.CrossRefGoogle Scholar
  38. Clarkson, C. (2012). Establishing homogeneity of the universe in the shadow of dark energy. Comptes Rendus Physique, 13, 682–718.CrossRefGoogle Scholar
  39. Clarkson, C., & Maartens, R. (2010). Inhomogeneity and the foundations of concordance cosmology. Classical and Quantum Gravity, 27, 124008.CrossRefGoogle Scholar
  40. Clarkson, R., Ghezelbash, A. M., & Mann, R. B. (2003). Entropic N-bound and maximal mass conjecture violations in four-dimensional Taub–Bolt (NUT)-dS spacetimes. Nuclear Physics B, 674, 329–364.CrossRefGoogle Scholar
  41. Clifton, T., Clarkson, C., & Bull, P. (2012). Isotropic blackbody cosmic microwave background radiation as evidence for a homogenous universe. Physical Review Letters, 109, 051303.CrossRefGoogle Scholar
  42. Davidson, D. (1967). Causal relations. The Journal of Philosophy, 64, 691–703.CrossRefGoogle Scholar
  43. Davidson, D. (1969). The individuation of events. In N. Rescher (Ed.), Essays in honor of Carl G. Hempel (pp. 216–234). Dordrecht: Reidel.CrossRefGoogle Scholar
  44. Davidson, D. (2001). The individuation of events. In D. Davidson (Ed.), Essays on actions and events (2nd ed., pp. 163–180). Oxford: Clarendon Press.CrossRefGoogle Scholar
  45. Davies, P. C. W. (1983). Inflation and time asymmetry: Or what wound up the universe. Nature, 301, 398–400.CrossRefGoogle Scholar
  46. De Muijnck, W. (2003). Dependences, connections, and other relations: A Theory of mental causation. (Philosophical Studies Series 93) Dordrecht: Kluwer.Google Scholar
  47. de Sitter, W. (1917). On Einstein’s theory of gravitation, and its astronomical consequences (Third Paper). Monthly Notices of the Royal Astronomical Society, 78, 3–28.CrossRefGoogle Scholar
  48. de Sitter, W. (1918). On the curvature of space. In Koninklijke Akademie van Wetenschappen KNAW, Proceedings of the section of sciences, Amsterdam (pp. 229–243). 20, part 1.Google Scholar
  49. Dyson, L., Kleban, M., & Susskind, L. (2002). Disturbing implications of a cosmological constant. Journal of High Energy Physics, 10(2002), 011.CrossRefGoogle Scholar
  50. Earman, J. (1984). Laws of nature: The empiricist challenge. In R. J. Bogdan (Ed.), D.M. Armstrong (Profiles Vol. 4, pp 191–223). Dordrecht: Reidel.Google Scholar
  51. Earman, J. (1995). Bangs, crunches, whimpers, and shrieks: Singularities and acausalities in relativistic spacetimes. New York: Oxford University Press.Google Scholar
  52. Earman, J. (2006). The “past hypothesis”: Not even false. Studies in History and Philosophy of Modern Physics, 37, 399–430.CrossRefGoogle Scholar
  53. Ehlers, J., Geren, P., & Sachs, R. K. (1968). Isotropic solutions of the Einstein–Liouville equations. Journal of Mathematical Physics, 9, 1344–1349.CrossRefGoogle Scholar
  54. Farhi, E., Guth, A., & Guven, J. (1990). Is it possible to create a universe in the laboratory by quantum tunneling? Nuclear Physics B, 339, 417–490.CrossRefGoogle Scholar
  55. Fischler, W., Morgan, D., & Polchinski, J. (1990). Quantization of false-vacuum bubbles: A hamiltonian treatment of gravitational tunneling. Physical Review D, 42, 4042–4055.CrossRefGoogle Scholar
  56. Geroch, R. (1966). Singularities in closed universes. Physical Review Letters, 17, 445–447.CrossRefGoogle Scholar
  57. Gibbons, G. W., & Hawking, S. W. (1977). Cosmological event horizons, thermodynamics, and particle creation. Physical Review D, 15, 2738–2751.CrossRefGoogle Scholar
  58. Ginsparg, P., & Perry, M. J. (1983). Semiclassical perdurance of de Sitter space. Nuclear Physics B, 222, 245–268.CrossRefGoogle Scholar
  59. Greene, B. (2004). The fabric of the cosmos: Space, time, and the texture of reality. New York: Alfred A. Knopf.Google Scholar
  60. Gross, D. J. (1997). The triumph and limitations of quantum field theory. arXiv:hep-th/9704139v1.
  61. Guth, A. (2004). Inflation. In W. L. Freedman (Ed.), Measuring and modeling the universe (Carnegie Observatories Astrophysics Series Vol. 2, pp. 31–52) Cambridge: Cambridge University Press.Google Scholar
  62. Hasse, W., & Perlick, V. (1999). On spacetime models with an isotropic hubble law. Classical and Quantum Gravity, 16, 2559–2576.CrossRefGoogle Scholar
  63. Hawking, S. W. (1965). Occurrence of singularities in open universes. Physical Review Letters, 15, 689–690.CrossRefGoogle Scholar
  64. Hawking, S. W. (1966a). The occurrence of singularities in cosmology. In Proceedings of the royal society of London. Series A, mathematical and physical sciences, Vol. 294, pp. 511–521.Google Scholar
  65. Hawking, S. W. (1966b). The occurrence of singularities in cosmology. II. In Proceedings of the royal society of London. Series A, mathematical and physical sciences, Vol. 295, pp. 490–493.Google Scholar
  66. Hawking, S. W. (1967). The occurrence of singularities in cosmology. III. Causality and singularities. In Proceedings of the royal society of London. Series A, mathematical and physical sciences, Vol. 300, pp. 187–201.Google Scholar
  67. Hawking, S. W. (1996). Classical theory. In S. Hawking, & R. Penrose (Eds.), The nature of space and time. (Princeton Science Library) (pp. 3–26). Princeton: Princeton University Press.Google Scholar
  68. Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space-time. New York: Cambridge University Press.CrossRefGoogle Scholar
  69. Hawking, S. W., & Penrose, R. (1970). The singularities of gravitational collapse and cosmology. In Proceedings of the royal society of London. Series A, mathematical and physical sciences, Vol. 314, pp. 529–548.Google Scholar
  70. Jacobson, T. (1994). Black hole entropy and induced gravity. arXiv:gr-qc/9404039v1.
  71. Kim, J. (1989a). Mechanism, purpose, and explanatory exclusion. In Philosophical perspectives. (Philosophy of Mind and Action Theory) (Vol. 3, pp. 77–108). Atascadero: Ridgeview Publishing Company.Google Scholar
  72. Kim, J. (1989b). The myth of nonreductive materialism. Proceedings and Addresses of the American Philosophical Association, 63, 31–47.CrossRefGoogle Scholar
  73. Koons, R. C. (2000). Realism regained: An exact theory of causation, teleology, and the mind. New York: Oxford University Press.Google Scholar
  74. Koster, R., & Postma, M. (2011). A no-go for no-go theorems prohibiting cosmic acceleration in extra dimensional models. Journal of Cosmology and Astroparticle Physics, 12(2011), 015. doi:10.1088/1475-7516/2011/12/015.CrossRefGoogle Scholar
  75. Lewis, D. (1973a). Causation. The Journal of Philosophy, 70, 556–567.CrossRefGoogle Scholar
  76. Lewis, D. (1973b). Counterfactuals. Malden: Blackwell.Google Scholar
  77. Lewis, D. (1983). New work for a theory of universals. Australasian Journal of Philosophy, 61, 343–377.CrossRefGoogle Scholar
  78. Lewis, D. (1994). Humean supervenience debugged. Mind, 103, 473–490.CrossRefGoogle Scholar
  79. Lewis, D. (2004). Causation as influence. In J. Collins, N. Hall, & L. A. Paul (Eds.), Causation and counterfactuals (pp. 75–106). Cambridge, MA: MIT Press.Google Scholar
  80. Linde, A. (2004). Inflation, quantum cosmology, and the anthropic principle. In J. D. Barrow, P. C. W. Davies, & C. L. Harper (Eds.), Science and ultimate reality: Quantum theory, cosmology, and complexity (pp. 426–458). New York: Cambridge University Press.CrossRefGoogle Scholar
  81. Loewer, B. (2001). Determinism and chance. Studies in History and Philosophy of Modern Physics, 32, 609–620.CrossRefGoogle Scholar
  82. Loewer, B. (2008). Why there is anything except physics. In J. Hohwy & J. Kallestrup (Eds.), Being reduced: New essays on reduction, explanation, and causation (pp. 149–163). Oxford: Oxford University Press.CrossRefGoogle Scholar
  83. Loewer, B. (2012). Two accounts of laws and time. Philosophical Studies, 160, 115–137.CrossRefGoogle Scholar
  84. Lyth, D. H., & Liddle, A. R. (2009). The primordial density perturbation: Cosmology, inflation and the origin of structure. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  85. Maartens, R. (2011). Is the universe homogeneous? Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 369, 5115–5137.CrossRefGoogle Scholar
  86. Maartens, R., & Matravers, D. R. (1994). Isotropic and semi-isotropic observations in cosmology. Classical and Quantum Gravity, 11, 2693–2704.CrossRefGoogle Scholar
  87. Mackie, J. L. (1974). The cement of the universe: A study of causation. Oxford: Oxford University Press.Google Scholar
  88. Maldacena, J., & Nuñez, C. (2001). Supergravity description of field theories on curved manifolds and a no go theorem. International Journal of Modern Physics A, 16, 822–855.Google Scholar
  89. Maudlin, T. (2007). The metaphysics within physics. New York: Oxford University Press.CrossRefGoogle Scholar
  90. McInnes, B. (2007). The arrow of time in the landscape. arXiv:0711.1656v2 [hep-th].
  91. Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: W.H. Freeman and Company.Google Scholar
  92. Mithani, A., & Vilenkin, A. (2012). Did the universe have a beginning?. arXiv:1204.4658v1 [hep-th].
  93. Nikolić, H. (2004) Comment on “spontaneous inflation and the origin of the arrow of time”. arXiv:hep-th/0411115v1.
  94. North, J. (2011). Time in thermodynamics. In C. Callender (Ed.), The oxford handbook of philosophy of time (pp. 312–350). New York: Oxford University Press.Google Scholar
  95. Page, D. N. (2008). Return of the Boltzmann brains. Physical Review D, 78, 063536.CrossRefGoogle Scholar
  96. Paul, L. A. (2007). Constitutive overdetermination. In J. K. Campbell, M. O’Rourke, & H. Silverstein (Eds.), Causation and explanation (pp. 265–290). Cambridge, MA: MIT Press.Google Scholar
  97. Penrose, R. (1965). Gravitational collapse and space-time singularities. Physical Review Letters, 14, 57–59.CrossRefGoogle Scholar
  98. Penrose, R. (1979). Singularities and time-asymmetry. In S. W. Hawking & W. Israel (Eds.), General relativity: An Einstein centenary survey (pp. 581–638). New York: Cambridge University Press.Google Scholar
  99. Penrose, R. (1989a). The emperor’s new mind. New York: Oxford University Press.Google Scholar
  100. Penrose, R. (1989b). Difficulties with inflationary cosmology. Annals of the New York Academy of Sciences, 571, 249–264.CrossRefGoogle Scholar
  101. Penrose, R. (1996). Structure of spacetime singularities. In S. Hawking, & R. Penrose (Eds.), The nature of space and time. (Princeton Science Library) (pp. 27–36). Princeton: Princeton University Press.Google Scholar
  102. Penrose, R. (2007). The road to reality: A complete guide to the laws of the universe. New York: Vintage Books.Google Scholar
  103. Penrose, R. (2012). Cycles of time: An extraordinary new view of the universe. New York: Vintage Books.Google Scholar
  104. Price, H. (1996). Time’s arrow and archimedes’ point: New directions for the physics of time. New York: Oxford University Press.Google Scholar
  105. Price, H. (2004). On the origins of the arrow of time: Why there is still a puzzle about the low-entropy past. In C. Hitchcock (Ed.), Contemporary debates in philosophy of science (Contemporary Debates in Philosophy) (pp. 219–239). Malden: Blackwell.Google Scholar
  106. Ramsey, F. P. (1990). Law and causality. In D. H. Mellor (Ed.), Philosophical papers (pp. 140–163). Cambridge: Cambridge University Press.Google Scholar
  107. Rea, M. (1998). In defense of mereological universalism. Philosophy and Phenomenological Research, 58, 347–360.CrossRefGoogle Scholar
  108. Sahni, V. (2002). The cosmological constant problem and quintessence. Classical and Quantum Gravity, 19, 3435–3448.CrossRefGoogle Scholar
  109. Schaffer, J. (2003). Overdetermining causes. Philosophical Studies, 114, 23–45.CrossRefGoogle Scholar
  110. Sider, T. (2003). What’s so bad about overdetermination? Philosophy and Phenomenological Research, 67, 719–726.CrossRefGoogle Scholar
  111. Simons, P. (2003). Events. In Michael J. Loux & Dean W. Zimmerman (Eds.), The oxford handbook of metaphysics (pp. 357–385). New York: Oxford University Press.Google Scholar
  112. Sklar, L. (1993). Physics and chance: Philosophical issues in the foundations of statistical mechanics. New York: Cambridge University Press.CrossRefGoogle Scholar
  113. Smeenk, C. (2013). Philosophy of cosmology. In Robert Batterman (Ed.), The oxford handbook of philosophy of physics (pp. 607–652). New York: Oxford University Press.Google Scholar
  114. Smolin, L. (2002). Quantum gravity with a positive cosmological constant. arXiv:hep-th/0209079v1.
  115. Steinhardt, P. J. (2011). The inflation debate: Is the theory at the heart of modern cosmology deeply flawed? Scientific American, 304(4), 36–43.CrossRefGoogle Scholar
  116. Steinhardt, P. J., & Turok, N. (2002a). Cosmic evolution in a cyclic universe. Physical Review D, 65, 126003.CrossRefGoogle Scholar
  117. Steinhardt, P. J., & Turok, N. (2002b). A cyclic model of the universe. Science, 296, 1436–1439.CrossRefGoogle Scholar
  118. Steinhardt, P. J., & Turok, N. (2005). The cyclic model simplified. New Astronomy Reviews, 49, 43–57.CrossRefGoogle Scholar
  119. Steinhardt, P. J., & Wesley, D. (2009). Dark energy, inflation, and extra dimensions. Physical Review D, 79, 104026.CrossRefGoogle Scholar
  120. Stoeger, W. R., Maartens, R., & Ellis, G. F. R. (1995). Proving almost-homogeneity of the universe: An almost Ehlers–Geren–Sachs theorem. The Astrophysical Journal, 443, 1–5.CrossRefGoogle Scholar
  121. Strominger, A. (2001). The ds/CFT correspondence. Journal of High Energy Physics, 10(2001), 029.Google Scholar
  122. Vachaspati, T. (2007). On constructing baby universes and black holes. arXiv:0705.2048v1 [gr-qc].
  123. Van Cleve, J. (2008). The moon and sixpence: A defense of mereological universalism. In T. Sider, J. Hawthorne, & D. W. Zimmerman (Eds.), Contemporary Debates in metaphysics (Contemporary Debates in Philosophy) (pp. 321–340). Malden: Blackwell.Google Scholar
  124. van Fraassen, B. C. (1989). Laws and symmetry. New York: Oxford University Press.CrossRefGoogle Scholar
  125. van Inwagen, P. (1990). Material beings. Ithaca: Cornell University Press.Google Scholar
  126. Van Riet, T. (2012). On classical de Sitter solutions in higher dimensions. Classical and Quantum Gravity, 29, 055001.CrossRefGoogle Scholar
  127. Vilenkin, A. (2006). Many worlds in one: The search for other universes. New York: Hill and Wang.Google Scholar
  128. Vilenkin, A. (2013). Arrows of time and the beginning of the universe. Physical Review D, 88, 043516.CrossRefGoogle Scholar
  129. Wald, R. M. (1984). General relativity. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  130. Wald, R. M. (2006). The arrow of time and the initial conditions of the universe. Studies in History and Philosophy of Modern Physics, 37, 394–398.CrossRefGoogle Scholar
  131. Wall, A. C. (2012). Proof of the generalized second law for rapidly changing fields and arbitrary horizon slices. Physical Review D, 85, 104049.CrossRefGoogle Scholar
  132. Wall, A. C. (2013). The generalized second law implies a quantum singularity theorem. Classical and Quantum Gravity, 30, 165003.CrossRefGoogle Scholar
  133. Wallace, D. (2012). The emergent multiverse: Quantum theory according to the everett interpretation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  134. Weaver, C. (2012). What could be caused must actually be caused. In Synthese. 184, 299–317 with ‘Erratum to: What could be caused must actually be caused’. Synthese. 183, 279.Google Scholar
  135. Weaver, C. (2013). A church-fitch proof for the universality of causation. Synthese, 190, 2749–2772.CrossRefGoogle Scholar
  136. Weinberg, S. (2008). Cosmology. New York: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Philosophy DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations