Journal for General Philosophy of Science

, Volume 45, Issue 2, pp 335–350 | Cite as

A Philosophical Look at the Higgs Mechanism

Article

Abstract

On the occasion of the recent experimental detection of a Higgs-type particle at the Large Hadron Collider at CERN, the paper reviews philosophical aspects of the Higgs mechanism as the presently preferred account of the generation of particle masses in the Standard Model of elementary particle physics and its most discussed extensions. The paper serves a twofold purpose: on the one hand, it offers an introduction to the Higgs mechanism and its most interesting philosophical aspects to readers not familiar with it; on the other hand, it clarifies widespread misunderstandings related to the role of gauge symmetries and their breaking in it.

Keywords

Higgs mechanism Gauge symmetries Quantum field theory Symmetry breaking 

References

  1. Achenbach, J. (2008). At the heart of all matter: The hunt for the god particle. National Geographic. Available online at http://ngm.nationalgeographic.com/2008/03/god-particle/achenbach-text.
  2. Anderson, P. W. (1963). Plasmons, gauge invariance and mass. Physical Review, 130, 439–442.CrossRefGoogle Scholar
  3. Caudy, W., & Greensite, J. (2008). Ambiguity of spontaneously broken gauge symmetry. Physical Review D, 78, 025018.CrossRefGoogle Scholar
  4. De Angelis, G. F., De Falco, D., & Guerra, F. (1978). Note on the abelian Higgs-Kibble model on a lattice: Absence of spontaneous magnetization. Physical Review D, 17, 1624–1628.CrossRefGoogle Scholar
  5. Earman, J. (2004). Laws, symmetry, and symmetry breaking: Invariance, conservation principles, and objectivity. Philosophy of Science, 71, 1227–1241.CrossRefGoogle Scholar
  6. Elitzur, S. (1975). Impossibility of spontaneously breaking local symmetries. Physical Review D, 12, 3978–3982.CrossRefGoogle Scholar
  7. Englert, F., & Brout, R. (1964). Broken symmetry and the mass of gauge vector mesons. Physical Review Letters, 13, 321–323.CrossRefGoogle Scholar
  8. Fradkin, E., & Shenker, S. H. (1979). Phase diagrams of lattice gauge theories with Higgs fields. Physical Review D, 19, 3628–3697.CrossRefGoogle Scholar
  9. Friederich, S. (2013). Gauge symmetry breaking in gauge theories—in search of clarification. European Journal for Philosophy of Science, 3, 157–182.CrossRefGoogle Scholar
  10. Friederich, S. (2014). Symmetry, empirical significance, and identity. British Journal for the Philosophy of Science, doi:10.1093/bjps/axt046.
  11. Fröhlich, J., Morchio, G., & Strocchi, F. (1981). Higgs phenomenon without symmetry breaking order parameter. Nuclear Physics B, 190, 553–582.CrossRefGoogle Scholar
  12. Greaves, H., & Wallace, D. (2014). Empiricial consequences of symmetries. British Journal for the Philosophy of Science, 65, 59–89.CrossRefGoogle Scholar
  13. Greensite, J. (2011). An introduction to the confinement problem. Berlin: Springer.CrossRefGoogle Scholar
  14. Guralnik, G. S., Hagen, C. R., & Kibble, T. W. B. (1964). Global conservation laws and massless particles. Physical Review Letters, 13, 585–587.CrossRefGoogle Scholar
  15. Healey, R. (1998). Quantum analogies: A reply to Maudlin. Philosophy of Science, 66, 440–447.CrossRefGoogle Scholar
  16. Healey, R. (2007). Gauging what’s real: The conceptual foundations of contemporary gauge theories. New York: Oxford University Press.CrossRefGoogle Scholar
  17. Healey, R. (2009). Perfect symmetries. British Journal for the Philosophy of Science, 60, 697–720.CrossRefGoogle Scholar
  18. Higgs, P. W. (1964). Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13, 508–509.CrossRefGoogle Scholar
  19. Itzykson, C., & Drouffe, J.-M. (1989). Statistical field theory. Vol. 1: From Brownian motion to renormalization and lattice gauge theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Jackson, J. D. (1998). Classical electrodynamics (3rd ed.). Wiley: New York.Google Scholar
  21. Karaca, K. (2013). The construction of the Higgs mechanism and the emergence of the electroweak theory. Studies in History and Philosophy of Modern Physics, 44, 1–16.CrossRefGoogle Scholar
  22. Kibble, T. W. B. (1967). Symmetry breaking in non-Abelian gauge theories. Physical Review, 155, 1554–1561.CrossRefGoogle Scholar
  23. Lyre, H. (2010). Humean perspectives on structural realism. In F. Stadler (Ed.), The present situation in the philosophy of science (pp. 381–397). Berlin: Springer Netherland.CrossRefGoogle Scholar
  24. Maudlin, T. (1998). Healey on the Aharonov-Bohm effect. Philosophy of Science, 65, 361–368.CrossRefGoogle Scholar
  25. Noether, E. (1918). Invariante Variationsprobleme, Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse Book 2:235–57, English translation by M. A. Tavel. Available at http://arxiv.org/abs/physics/0503066v1.
  26. Perez, A., & Sudarsky, D. (2008). On the symmetry of the vacuum in theories with spontaneous symmetry breaking. http://arxiv.org/abs/0811.3181.
  27. Ruetsche, L. (2011). Interpreting quantum theories. Oxford: Oxford University Press.CrossRefGoogle Scholar
  28. Roberts, B. W. (2011). Group structural realism. The British Journal for the Philosophy of Science, 62, 47–69.CrossRefGoogle Scholar
  29. Smeenk, C. (2006). The elusive Higgs mechanism. Philosophy of Science, 73, 487–499.CrossRefGoogle Scholar
  30. Strocchi, F. (1985). Elements of quantum mechanics of infinite systems. Singapore: World Scientific.CrossRefGoogle Scholar
  31. Strocchi, F. (2008). Symmetry breaking (2nd ed.). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  32. Struyve, W. (2011). Gauge invariant accounts of the Higgs mechanism. Studies in History and Philosophy of Modern Physics, 42, 226–236.CrossRefGoogle Scholar
  33. Weinberg, S. (1974). Gauge and global symmetry at high temperature. Physical Review D, 9, 3357–3378.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Universität GöttingenGōttingenGermany

Personalised recommendations