Journal for General Philosophy of Science

, Volume 43, Issue 2, pp 223–241

The Structure of Causal Sets

Article

Abstract

More often than not, recently popular structuralist interpretations of physical theories leave the central concept of a structure insufficiently precisified. The incipient causal sets approach to quantum gravity offers a paradigmatic case of a physical theory predestined to be interpreted in structuralist terms. It is shown how employing structuralism lends itself to a natural interpretation of the physical meaning of causal set theory. Conversely, the conceptually exceptionally clear case of causal sets is used as a foil to illustrate how a mathematically informed rigorous conceptualization of structure serves to identify structures in physical theories. Furthermore, a number of technical issues infesting structuralist interpretations of physical theories such as difficulties with grounding the identity of the places of highly symmetrical physical structures in their relational profile and what may resolve these difficulties can be vividly illustrated with causal sets.

Keywords

Causal set theory Quantum spacetime Structural realism Structure 

References

  1. Bain, J. (2006). Spacetime structuralism. In D. Dieks (Ed.), The ontology of spacetime (pp. 37–66). Amsterdam: Elsevier.CrossRefGoogle Scholar
  2. Bain, J. (forthcoming). Category-theoretic structure and radical ontic structural realism. Synthese.Google Scholar
  3. Bain, J., & Norton, J. D. (2001). What should philosophers of science learn from the history of the electron? In J. Z. Buchwald & A. Warwick (Eds.), Histories of the electron: The birth of microphysics (pp. 451–465). Cambridge, MA: MIT Press.Google Scholar
  4. Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Space-time as a causal set. Physics Review Letters, 59, 521–524.CrossRefGoogle Scholar
  5. Brightwell, G., Dowker, H. F., García, R. S., Henson, J., & Sorkin, R. D. (2002). General covariance and the ‘problem of time’ in a discrete cosmology. In K. Bowden (Ed.), Correlations: Proceedings of the ANPA 23 Conference, August 16–21, 2001, Cambridge, England (pp. 1–17). London: Alternative Natural Philosophy Association.Google Scholar
  6. Butterfield, J. (2007). Stochastic Einstein locality revisited. British Journal for the Philosophy of Science, 58, 805–867.CrossRefGoogle Scholar
  7. Dowker, F. (2005). Causal sets and the deep structure of spacetime. In A. Ashtekar (Ed.), 100 Years of relativity: Space-time structure: Einstein and beyond (pp. 445–464). Singapore: World Scientific.CrossRefGoogle Scholar
  8. Dowker, F., Henson, J., & Sorkin, R. D. (2004). Quantum gravity phenomenology, Lorentz invariance and discreteness. Modern Physics Letters A, 19, 1829–1840.CrossRefGoogle Scholar
  9. Earman, J. (2008). Reassessing the prospects for a growing block model of the universe. International Studies in the Philosophy of Science, 22, 135–164.CrossRefGoogle Scholar
  10. Esfeld, M., & Lam, V. (2008). Moderate structural realism about space-time. Synthese, 160, 27–46.CrossRefGoogle Scholar
  11. Esfeld, M., & Lam, V. (forthcoming). The structural metaphysics of quantum theory and general relativity. Manuscript. Journal for General Philosophy of Science.Google Scholar
  12. French, S. (2010). The interdependence of structure, objects, and dependence. Synthese, 175 (supplement), 89–109.Google Scholar
  13. Georgiou, N. (2005). The random binary growth model. Random Structures and Algorithms, 27, 520–552.CrossRefGoogle Scholar
  14. Hawking, S. W., King, A. R., & McCarthy, P. J. (1976). A new topology for curved space-time which incorporates the causal, differential, and conformal structures. Journal of Mathematical Physics, 17, 174–181.CrossRefGoogle Scholar
  15. Henson, J. (2009). The causal set approach to quantum gravity. In D. Oriti (Ed.), Approaches to quantum gravity: Toward a new understanding of space, time and matter (pp. 393–413). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Hooft, G. ’t. (1979). Quantum gravity: A fundamental problem and some radical ideas. In M. Lévy & S. Deser (Eds.), Recent developments in gravitation: Cargèse 1978 (pp. 323–345). New York: Plenum Press.CrossRefGoogle Scholar
  17. Jones, R. (1991). Realism about what? Philosophy of Science, 58, 185–202.CrossRefGoogle Scholar
  18. Ladyman, J. (1998). What is structural realism? Studies in the History and Philosophy of Modern Physics, 29, 409–424.CrossRefGoogle Scholar
  19. Ladyman, J. (2009). Structural realism. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. http://plato.stanford.edu/entries/structural-realism/.
  20. Ladyman, J., Ross, D., Spurrett, D., & Collier, J. (2007). Every thing must go: Metaphysics naturalized. Oxford: Oxford University Press.Google Scholar
  21. Lam, V., & Wüthrich, C. (2012). No categorical support for radical ontic structural realism. Manuscript.Google Scholar
  22. Leitgeb, H., & Ladyman, J. (2008). Criteria of identity and structuralist ontology. Philosophia Mathematica, 16, 388–396.CrossRefGoogle Scholar
  23. Landry, E. (2007). Shared structure need not be shared set-structure. Synthese, 158, 1–17.CrossRefGoogle Scholar
  24. Malament, D. B. (1977). The class of continuous timelike curves determines the topology of spacetime. Journal of Mathematical Physics, 18, 1399–1404.CrossRefGoogle Scholar
  25. Muller, F. A. (2010). The characterization of structure: Definition versus axiomatisation. In F. Stadler et al. (Eds.), The present situation in the philosophy of science (pp. 399–416). Berlin: Springer.CrossRefGoogle Scholar
  26. Muller, F. A. (2011). How to defeat Wüthrich’s abysmal embarrassment argument against space-time structuralism. Philosophy of Science, 78, 1046–1057.Google Scholar
  27. Myrheim, J. (1978). Statistical geometry. CERN preprint TH-2538, available at http://doc.cern.ch/archive/electronic/kek-scan/197808143.pdf.
  28. Pooley, O. (2006). Points, particles, and structural realism. In D. Rickles, S. French & J. Saatsi (Eds.), The structural foundations of quantum gravity (pp. 83–120). Oxford: Oxford University Press.Google Scholar
  29. Reid, D. D. (2001). Discrete quantum gravity and causal sets. Canadian Journal of Physics, 79, 1–16.CrossRefGoogle Scholar
  30. Rideout, D. P., & Sorkin, R. D. (1999). Classical sequential growth for causal sets. Physical Review D, 61, 024002.CrossRefGoogle Scholar
  31. Rideout, D., & Wallden, P. (2009). Emergence of spatial structure from causal sets. Journal of Physics: Conference Series, 174, 012017.CrossRefGoogle Scholar
  32. Roberts, B. (2011). Group structural realism. British Journal for the Philosophy of Science, 62, 47–69.CrossRefGoogle Scholar
  33. Saunders, S. (2003). Structural realism, again. Synthese, 136, 127–133.CrossRefGoogle Scholar
  34. Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. New York: Oxford University Press.Google Scholar
  35. Smeenk, C., & Wüthrich, C. (2011). Time travel and time machines. In C. Callender (Ed.), The Oxford handbook in the philosophy of time (pp. 577–630). Oxford: Oxford University Press.Google Scholar
  36. Smolin, L. (2006). The case for background independence. In D. Rickles, S. French & J. Saatsi (Eds.), The structural foundations of quantum gravity (pp. 196–239). Oxford: Oxford University Press.Google Scholar
  37. Stachel, J. (2006). Structure, individuality, and quantum gravity. In D. Rickles, S. French & J. Saatsi (Eds.), The structural foundations of quantum gravity (pp. 53–82). Oxford: Oxford University Press.Google Scholar
  38. Varadarajan, M., & Rideout, D. P. (2006). A general solution for classical sequential growth dynamics of causal sets. Physics Review D, 73, 104021.CrossRefGoogle Scholar
  39. Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43, 99–124.CrossRefGoogle Scholar
  40. Worrall, J., & Zahar, E. (2001). Ramsification and structural realism. Appendix in E. Zahar, Poincaré’s philosophy: From conventionalism to phenomenology (pp. 236–251). Chicago, La Salle, IL: Open Court.Google Scholar
  41. Wüthrich, C. (2009). Challenging the spacetime structuralist. Philosophy of Science, 76, 1039–1051.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations