Journal for General Philosophy of Science

, Volume 42, Issue 2, pp 365–383 | Cite as

Matters of Interest: The Objects of Research in Science and Technoscience

  • Bernadette Bensaude-Vincent
  • Sacha Loeve
  • Alfred Nordmann
  • Astrid Schwarz
Discussion

Abstract

This discussion paper proposes that a meaningful distinction between science and technoscience can be found at the level of the objects of research. Both notions intermingle in the attitudes, intentions, programs and projects of researchers and research institutions—that is, on the side of the subjects of research. But the difference between science and technoscience becomes more explicit when research results are presented in particular settings and when the objects of research are exhibited for the specific interest they hold. When an experiment is presented as scientific evidence which confirms or disconfirms a hypothesis, this agrees with traditional conceptions of science. When organic molecules are presented for their capacity to serve individually as electric wires that carry surprisingly large currents, this would be a hallmark of technoscience. Accordingly, we propose research on the ontology of research objects. The focus on the character and significance of research objects makes this a specifically philosophical project.

Keywords

Ontology Research objects Technoscience Dispositions Affordances Philosophy of scientific experimentation 

References

  1. Bachelard, G. (1938). La formation de l’esprit scientifique: contribution à une psychanalyse de la connaissance objective. Paris: J. Vrin.Google Scholar
  2. Baird, D., & Shew, A. (2004). Probing the history of scanning tunneling microscopy. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale (pp. 145–156). Amsterdam: IOS Press.Google Scholar
  3. Balashov, J. (2010). Persistence and spacetime. New York: Oxford University Press.CrossRefGoogle Scholar
  4. Barad, K. (1999). Agential realism: Feminist interventions in understanding scientific practices. In M. Biagioli (Ed.), The science studies reader. New York, London: Routledge.Google Scholar
  5. Bensaude-Vincent, B. (2009). Les vertiges de la techoscience. Façonner le monde atome par atome. Paris: La Découverte.Google Scholar
  6. Binnig, G. (2004). Preface. In N. Boeing (Ed.), Alles nano?! Die Technik des 21. Jahrhunderts. Berlin: Rowohlt.Google Scholar
  7. Binnig, G. (2009). Interview statesment. In: Expedition Zukunft/Science Express (exhibition catalogue) (p. 239 and 246). Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  8. Boon, M., & Knuuttila, T. (2011). Breaking up with the epochal break: The case of engineering sciences. In A. Nordmann, H. Radder, & G. Schiemann (Eds.), Science transformed? Debating claims of an epochal break (pp. 66–79). Pittsburgh: Pittsburgh University Press.Google Scholar
  9. Carrier, M., & Nordmann, A. (Eds.). (2010). Science in the context of application. Boston studies in the philosophy of science (Vol. 274, p. 491). Dordrecht: Springer.Google Scholar
  10. Chang, Hasok. (2004). Inventing temperature. Measurement and scientific progress. New York: Oxford University Press.Google Scholar
  11. Daston, L. (Ed.). (2000). Biographies of scientific objects. Chicago, London: University of Chicago Press.Google Scholar
  12. Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.Google Scholar
  13. de Jong, R., & Betti, A. (2010). The classical model of science: A millennia-old model of scientific rationality. Synthese, 174, 185–203.CrossRefGoogle Scholar
  14. Dewey, J. (1971). Experience and nature. LaSalle, IL: Open Court.Google Scholar
  15. Dupuy, J.-P. (2010). The narratology of lay ethics. Nanoethics, 4(2), 153–170.CrossRefGoogle Scholar
  16. Echeverria, J. (2003). La revolucion tecnocientifica. Madrid: Fondo de Cultura Economica.Google Scholar
  17. Foucault, M. (1973). The order of things: An archeology of the human sciences. New York: Vintage Books.Google Scholar
  18. Galison, P. (2006). The pyramid and the ring. Presentation at the conference of the Gesellschaft für Analytische Philosophie (GAP), Berlin.Google Scholar
  19. Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge—The dynamics of science and research in contemporary societies. London: Sage.Google Scholar
  20. Gimzewski, J. K. (2008). Nanotechnology: The endgame of materialism. Leonardo, 41(3), 259–264.CrossRefGoogle Scholar
  21. Goodman, N. (1972). Seven strictures on similarity. In: Problems and projects (pp. 22–32). Indianapolis, Ind.: Bobs-Merrill.Google Scholar
  22. Gzil, F. (2007). Animal models of Alzheimer’s disease and cognitive ageing, Presentation at the First Conference of the European Philosophy of Science Association, Madrid, November 14–17.Google Scholar
  23. Hacking, I. (1981). Do we see through a microscope? Pacific Philosophical Quarterly, 62, 305–322.Google Scholar
  24. Hacking, I. (1983). Representing and intervening. Introductory topics in the philosophy of natural science. Cambridge: Cambridge University Press.Google Scholar
  25. Haraway, D. (1997). Modest_witness@Second_millenium. FemaleMan©_meets_Onco-mouse™: Feminism and technoscience. New York: Routledge.Google Scholar
  26. Harman, G. (2005). Guerilla metaphysics. Phenomenology and the carpentry of Things. Chicago: Open Court.Google Scholar
  27. Harré, R. (2003). The Materiality of instruments in a metaphysics for experiments. In H. Radder (Ed.), Philosophy of scientific experimentation (pp. 19–38). Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
  28. Hayles, K. (Ed.). (2004). Nanoculture: Implications of the new technoscience. Chicago: University of Chicago Press.Google Scholar
  29. Hennig, J. (2006). Changes in the design of scanning tunneling microscopic images from 1980 to 1990. In J. Schummer & D. Baird (Eds.), Nanotechnology challenges: Implications for philosophy, ethics and society (pp. 143–163). Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  30. Hennig, J. (2011). Bildpraxis: Visuelle Strategien in der frühen Nanotechnologie. Bielefeld: Transcript.Google Scholar
  31. Hottois, G. (1984). Le signe et la technique. La philosophie à l’épreuve de la technique. Paris: Aubier.Google Scholar
  32. Hottois, G. (2002). Technoscience et sagesse?. Nantes: Pleins Feux.Google Scholar
  33. Ihde, D., & Selinger, E. (Eds.). (2003). Chasing technoscience. Bloomington, IN: Indiana University Press.Google Scholar
  34. Keller, E. F. (2000). Models of and models for: Theory and practice in contemporary biology. Philosophy of Science, 67(3), 72–86.CrossRefGoogle Scholar
  35. Latour, B. (1987). Science in action: how to follow scientists and engineers through society. Cambridge: Harvard University Press.Google Scholar
  36. Latour, B. (1999). Pandora’s hope. Cambridge: Harvard University Press.Google Scholar
  37. Latour, B. (2004). Politics of nature: How to bring the sciences into democracy. Cambridge, MA: Harvard University Press.Google Scholar
  38. Loeve, S. (2010). About a definition of nano: how to articulate nano and technology? HYLE–International Journal for Philosophy of Chemistry, 16(1), 3–18.Google Scholar
  39. Mendeleev, D. (1952). The relation between the properties of the atomic weight of the elements. In H. M. Leicester & H. S. Klickstein (Eds.), Sourcebook in Chemistry 1400–1900 (p. 439). New York: Dover.Google Scholar
  40. Mody, Cyrus. C. M., & Lynch, M. (2010). Test objects and other epistemic things: A history of a nanoscale object. British Society for the History of Science, 43(3), 423–458.CrossRefGoogle Scholar
  41. Mol, A. (1999). Ontological politics: A word and some questions. In J. Law & J. Hassard (Eds.), Actor-network theory and after (pp. 74–89). Oxford: Blackwell.Google Scholar
  42. Nordmann, A. (2006). Collapse of distance: Epistemic strategies of science and technoscience. Danish Yearbook of Philosophy, 41, 7–34.Google Scholar
  43. Nordmann, A. (2010a). Philosophy of technoscience in the regime of vigilance. In G. Hodge, D. Bowman, & A. Maynard (Eds.), International handbook of regulating nanotechnologies (pp. 25–45). Cheltenham: Edward Elgar.Google Scholar
  44. Nordmann, A. (2010b). Science in the context of technology. In M. Carrier & A. Nordmann (Eds.), Science in the context of application. Boston studies in the philosophy of science (Vol. 274, pp. 467–482). Dordrecht: Springer.Google Scholar
  45. Nordmann, A. (2011). The age of technoscience. In A. Nordmann, H. Radder, & G. Schiemann (Eds.), Science transformed? Debating claims of an epochal break (pp. 19–30). Pittsburgh: Pittsburgh University Press.Google Scholar
  46. Nordmann, A., Radder, H., & Schiemann, G. (Eds.). (2011). Science transformed? Debating claims of an epochal break. Pittsburgh: Pittsburgh University Press.Google Scholar
  47. Nowotny, H., Scott, P., & Gibbons, M. (2001). Re-thinking science: Knowledge and the public in an age of uncertainty. USA: Blackwell.Google Scholar
  48. Quine, W. V. O. (1980). From a logical point of view: Nine logico-philosophical essays. Cambridge, MA: Harvard University Press.Google Scholar
  49. Rabinow, P. (1997). Essays on the anthropology of reason. Princeton, NJ: Princeton University Press.Google Scholar
  50. Sassower, R. (1995). Cultural collisions: Postmodern technoscience. New York: Routledge.Google Scholar
  51. Schiemann, G. (2005). Natur, Technik, Geist. Kontexte der Natur nach Aristoteles und Descartes in lebens-weltlicher und subjektiver Erfahrung. Berlin, New York: de Gruyter.Google Scholar
  52. Schlick, M. (2009). Allgemeine erkenntnislehre. Wien: Springer.CrossRefGoogle Scholar
  53. Schwarz, A., & Nordmann, A. (2010). The political economy of technoscience. In M. Carrier & A. Nordmann (Eds.), Science in the context of application. Boston studies in the philosophy of science (Vol. 274, pp. 317–336). Dordrecht: Springer.Google Scholar
  54. Shinn, T. (2008). Research-technology and cultural change. Instrumentation, genericity, transversality. Oxford: The Bardwell Press.Google Scholar
  55. Soentgen, J. (2006). Atome sehen, Atome hören. In A. Nordmann, J. Schummer, & A. Schwarz (Eds.), Nanotechnologien im Kontext. Philosophische, ethische und gesellschaftliche Perspektiven (pp. 97–113). Berlin: Akademische Verlagsgesellschaft.Google Scholar
  56. Souriau, E. (1943). Les différents modes d’existence. Paris: Presses Universtaires de France 2010.Google Scholar
  57. Stengers, I. (2010). Cosmopolitics. Minneapolis: University of Minnesota Press.Google Scholar
  58. Verbeek, P. P. (2000). The thing about technology: Toward a phenomenology of technological artifacts. In C. Mitcham (Ed.), Metaphysics, epistemology, and technology (pp. 281–301). Chicago: The University of Chicago Press.Google Scholar
  59. Verbeek, P.-P. (2005). What things do: Philosophical reflections on technology, agency, and design. University Park: Pennyslvania State University Press.Google Scholar
  60. Whewell, W. (1858). Novum organum renovatum (3rd ed.). London: Parker.Google Scholar
  61. Wittgenstein, L. (1958). Tractatus logico-philosophicus. London: Routledge & Paul.Google Scholar
  62. Ziman, J. (2000). Real science: What it is and what it means. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bernadette Bensaude-Vincent
    • 1
  • Sacha Loeve
    • 1
  • Alfred Nordmann
    • 2
  • Astrid Schwarz
    • 3
  1. 1.Centre d’Etudes des Techniques, des Connaissances et des Pratiques (CETCOPRA)Université Paris 1 Panthéon-SorbonneParis cedex 05France
  2. 2.Technische Universität DarmstadtDarmstadtGermany
  3. 3.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations