On the Meaning of the Constant “c” in Modern Physics

Article

Abstract

In modern physics, the constant “c” plays a twofold role. On the one hand, “c” is the well known velocity of light in an empty Minkowskian space–time, on the other hand “c” is a characteristic number of Special Relativity that governs the Lorentz transformation and its consequences for the measurements of space–time intervals. We ask for the interrelations between these two, at first sight different meanings of “c”. The conjecture that the value of “c” has any influence on the structure of space–time is based on the operational interpretation of Special Relativity, which uses light rays for measurements of space–time intervals. We do not follow this way of reasoning but replace it by a more realistic approach that allows to show that the structure of the Minkowskian space–time can be reconstructed already on the basis of a restricted classical ontology (Mittelstaedt, Philosophie der Physik und der Raum-Zeit, Mannheim: BI-Wissenschaftsverlag, 1988 and Mittelstaedt, Kaltblütig: Philosophie von einem rationalen Standpunkt, Stuttgart: S. Hirzel Verlag, pp. 221–240, 2003), and that without any reference to the propagation of light. However, the space–time obtained in this way contains still an unknown constant. We show that this constant agrees numerically with “c” but that it must conceptually clearly be distinguished from the velocity of light. Hence, we argue for a clear distinction between the two faces of “c” and for a dualism of space–time and matter.

Keywords

Special relativity Light signals Minkowskian space–time 

References

  1. Borchers, H. J., & Hegerfeld, G. C. (1972). Über ein Problem der Relativitätstheorie: Wann sind Punktabbildungen des Rn linear?. In Nachrichten der Akademie der Wissenschaften in Göttingen, II (pp. 205–229). Mathematisch-Physikalische Klasse, Nr.10.Google Scholar
  2. Carr, B. (2007). Universe or multiverse?. Cambridge: Cambridge University Press.Google Scholar
  3. Ellis, G. F. R. et al. (2003). Multiverse and physical cosmology. In arXiv: astro-ph/0305292v3.Google Scholar
  4. Franck, Ph., & Rothe, H. (1911). Über die Transformation der Raum-Zeitkoordinaten von ruhenden auf bewegte Systeme. Annalen der Physik, 34, 825–855.CrossRefGoogle Scholar
  5. Gamov, G. (1946). Mr. Tompkins in wonderland. New York: The Macmillan Company.Google Scholar
  6. Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space-time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Ignatowski, W. V. (1910). Einige allgemeine Bemerkungen zum Relativitätsprinzip. Physikalische Zeitschrift, 11, 972–976.Google Scholar
  8. Lévy-Leblond, J. M. (1976). One more derivation of the Lorentz transformation. American Journal of Physics, 44, 271–277.CrossRefGoogle Scholar
  9. Linde, A. D. (1990). Inflation and quantum cosmology. San Diego, London: Academic Press.Google Scholar
  10. Marzke, R. F., & Wheeler, J. A. (1964). Gravitation as geometry. I: The geometry of space-time and the geometrodynamical standard meter. In H.-Y. Chiu & W. F. Hoffman (Eds.), Gravitation and relativity (pp. 40–64). New York: W. A. Benjamin.Google Scholar
  11. Misner, Ch. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: W. H. Freeman.Google Scholar
  12. Mittelstaedt, P. (1976, 1989). Der Zeitbegriff in der Physik (3rd ed.). Mannheim: BI-Wissenschaftsverlag.Google Scholar
  13. Mittelstaedt, P. (1988). Über die Bedeutung und Begründung der Speziellen Relativitätstheorie. In J. Audretsch & K. Mainzer (Eds.), Philosophie der Physik und der Raum-Zeit. Mannheim: BI-Wissenschaftsverlag.Google Scholar
  14. Mittelstaedt, P. (1995). Klassische Mechanik (2nd ed.). Mannheim: Bilbliographisches Institut.Google Scholar
  15. Mittelstaedt, P. (2003). Hätte Newton die Relativitätstheorie finden können? In W. Buschlinger & C. Lütge (Eds.), Kaltblütig: Philosophie von einem rationalen Standpunkt (pp. 221–240). Stuttgart: S. Hirzel Verlag.Google Scholar
  16. Mittelstaedt, P. (2006). Intuitiveness and Truth in Modern Physics. In E. Carson & R. Huber (Eds.), Intuition and the axiomatic method (pp. 251–266). Dordrecht: Springer.CrossRefGoogle Scholar
  17. Mittelstaedt, P. (2008). Planck’s constant in the light of quantum logic. International Journal of Theoretical Physics, 47, 104–113.CrossRefGoogle Scholar
  18. Penrose, R. (1959). The apparent shape of a relativistically moving sphere. Proceedings of the Cambridge Philosophical Society, 55, 137–139.CrossRefGoogle Scholar
  19. Sexl, R. U., & Urbantke, H. K. (1992). Relativität, Gruppen, Teilchen (3rd ed.). Wien, New York: Springer.Google Scholar
  20. Terrell, J. (1959). Invisibility of the Lorentz Contraction. Physical Review, 116, 1041–1045.CrossRefGoogle Scholar
  21. Vilenkin, A. (1982). Creation of universes from nothing. Physics Letters, 117B, 25–28.Google Scholar
  22. Vollmer, G. (2007). Wie viel Metaphysik brauchen wir? In D. Westerkamp & A. von der Lühe (Eds.), Metaphysik und Moderne. Würzburg: Königshausen & Neumann.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität zu KölnCologneGermany

Personalised recommendations