Journal for General Philosophy of Science

, Volume 40, Issue 2, pp 175–205 | Cite as

Can We Justifiably Assume the Cosmological Principle in Order to Break Model Underdetermination in Cosmology?

Article

Abstract

If cosmology is to obtain knowledge about the whole universe, it faces an underdetermination problem: Alternative space-time models are compatible with our evidence. The problem can be avoided though, if there are good reasons to adopt the Cosmological Principle (CP), because, assuming the principle, one can confine oneself to the small class of homogeneous and isotropic space-time models. The aim of this paper is to ask whether there are good reasons to adopt the Cosmological Principle in order to avoid underdetermination in cosmology. Various strategies to justify the CP are examined. For instance, arguments to the effect that the truth of the CP follows generically from a large set of initial conditions; an inference to the best explanation; and an inductive strategy are assessed. I conclude that a convincing justification of the CP has not yet been established, but this claim is contingent on a number of results that may have to be revised in the future.

Keywords

Cosmology Cosmological principle Space-time Underdetermination General theory of relativity 

References

  1. Barrett, R. K., & Clarkson, C. A. (2000). Undermining the cosmological principle: Almost isotropic observations in inhomogeneous cosmologies. Classical and Quantum Gravity, 17, 5047–5078.CrossRefGoogle Scholar
  2. Barrow, J. D. (1993). Unprincipled cosmology. Quarterly Journal of the Royal Astronomical Society, 34, 117–134.Google Scholar
  3. Bartels, A. (2009). Gesetze, Prinzipien, Randbedingungen—Ein wissenschaftstheoretischer Blick auf die physikalische Kosmologie, mimeo.Google Scholar
  4. Beisbart, C. (2009). The many faces of the cosmological principle, manuscript under revision for Studies in History and Philosophy of Modern Physics.Google Scholar
  5. Beisbart, C., & Jung, T. (2006). Privileged, typical, or not even that? Our place in the world according to the Copernican and the Cosmological principles. Journal for General Philosophy of Science, 37, 225–256CrossRefGoogle Scholar
  6. Bondi, H., & Gold, T. (1948). The steady-state theory of the expanding Universe. Monthly Notices of the Royal Astronomical Society, 108, 252–270.Google Scholar
  7. Bondi, H. (1968). Cosmology (2nd edn.). Cambridge: Cambridge University Press.Google Scholar
  8. Bothun, G. (1998). Modern cosmological observations and problems. London: Taylor and Francis.Google Scholar
  9. Boyd, R. N. (1984). The current status of scientific realism. In J. Leplin (Ed.), Scientific realism (pp. 41–82). Berkeley: University of California Press.Google Scholar
  10. Carroll, S. M. (2001). The cosmological constant. Living Reviews in Relativity, 4(1), http://relativity.livingreviews.org/Articles/lrr-2001-1/.
  11. Clarkson, C. A., Coley, A. A., O’Neill, E. S. D., Sussman, R. A., & Barrett, R. K. (2003). Inhomogeneous cosmologies, the copernican principle and the cosmic microwave background: More on the EGS theorem. General Relativity and Gravitation, 35, 969–990.CrossRefGoogle Scholar
  12. Collins, C. B., & Hawking, S. W. (1973). Why is the universe isotropic? Astrophysical Journal, 180, 317–334.CrossRefGoogle Scholar
  13. Devitt, M. (2006). Scientific realism. In F. Jackson, & M. Smith (Eds.), The Oxford handbook of contemporary philosophy (pp. 100–124). Oxford: Oxford University Press.Google Scholar
  14. Duhem, P. (1954). The aim and structure of physical theory. Princeton: Princeton University Press.Google Scholar
  15. Earman, J. (1986). A primer on determinism. Dordrecht: Kluwer.Google Scholar
  16. Earman, J. (1993). Undetermination, realism, and reason. Midwest Studies in Philosophy, XVIII, 19–38.CrossRefGoogle Scholar
  17. Earman, J. (2004). Laws, symmetry, and symmetry breaking; invariance, conservation principles, and objectivity. Philosophy of Science, 71, 1227–1241.CrossRefGoogle Scholar
  18. Earman, J., & Mosterin, J. (1999). A critical look at inflation. Philosophy of Science, 66, 1–49.CrossRefGoogle Scholar
  19. Earman, J., & Norton, J. D. (1987). What price spacetime substantivalism? The hole story. British Journal for the Philosophy of Science, 38, 515–525.CrossRefGoogle Scholar
  20. Ehlers, J., Geren, P., & Sachs, R. K. (1968). Isotropic solutions of the Einstein-Liouville equations. Journal of Mathematical Physics, 9, 1344–1349.CrossRefGoogle Scholar
  21. Einstein, A. (1917). Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie. Königlich Preußische Akademie der Wissenschaften, Sitzungsberichte, 142–152.Google Scholar
  22. Einstein, A. (1918). Prinzipielles zur Allgemeinen Relativitätstheorie. Annalen der Physik, 55, 241–244.CrossRefGoogle Scholar
  23. Einstein, A., & Straus, E. G. (1945). The influence of the expansion of space on the gravitation fields surrounding the individual stars. Reviews of Modern Physics, 17, 120–124.CrossRefGoogle Scholar
  24. Einstein, A. & Straus, E. G. (1946). Corrections and additional remarks to our paper: The influence of the expansion of space on the gravitation fields surrounding the individual stars. Reviews of Modern Physics, 18, 148–149.CrossRefGoogle Scholar
  25. Ellis, G. F. R. (1975). Cosmology and verifiability. Quarterly Journal of the Royal Astronomical Society, 16, 245–264, partly reprinted in: J. Leslie (Ed.), Physical Cosmology and Philosophy, 1990 (p. 113). London: MacMillan.Google Scholar
  26. Ellis, G. F. R. (1984). Relativistic cosmology—its nature, aims and problems. In B. Bertotti, F. de Felice, & A. Pascolini (Eds.), General relativity and gravitation conference (pp. 215–288). Dordrecht: Reidel.Google Scholar
  27. Ellis, G. (1991). Major themes in the relation between philosophy and cosmology. Memorie della Societa Astronomica Italiana, 62, 553–605.Google Scholar
  28. Ellis, G. F. R. (1993). The physics and geometry of the universe—changing viewpoints. Quarterly Journal of the Royal Astronomical Society, 34, 315–330.Google Scholar
  29. Ellis, G. F. R. (1999a). 83 years of general relativity and cosmology: Progress and problems. Classical and Quantum Gravity, 16, A37–A75.CrossRefGoogle Scholar
  30. Ellis, G. F. R. (1999b). Before the beginning. Astrophysics and Space Science, 269–270, 693–720.Google Scholar
  31. Ellis, G. F. R. (2007). Issues in the philosophy of cosmology. In J. Butterfield, & J. Earman (Eds.), Philosophy of Physics (pp. 1183–1286). Amsterdam: Elsevier. Preprint available under http://arxiv.org/abs/astro-ph/0602280.Google Scholar
  32. Ellis, G. F. R., & Harrison, E. R., (1974). Cosmological principles I. Symmetry principles. Comments on Astrophysics and Space Physics, 6, 23–27.Google Scholar
  33. Ellis, G. F. R., & Schreiber, G. (1986). Observational and dynamical properties of small universes. Physics Letters A, 115, 97–107.CrossRefGoogle Scholar
  34. Ellis, G. F. R., et al. (1985). Ideal observational cosmology. Physics Reports, 124, 315–417.CrossRefGoogle Scholar
  35. Fischer, A. E., & Marsden, J. E. (1979). The initial value problem and the dynamical formulation of general relativity. In S. W. Hawking, & W. Israel (Eds.), General realtivity. An Einstein centenary survey (pp. 138–211). Cambridge: Cambridge University Press.Google Scholar
  36. Glymour, C. (1977). Indistinguishable space-times and the fundamental group. In J. Earman, C. Glymour, & J. Stachel (Eds.), Foundations of space-time theories. Minnesota studies in the philosophy of science (pp. 50–60). Minneapolis: University of Minnesota Press.Google Scholar
  37. Hansen, F. K., Banday, A. J., & Górski, K. M. (2004). Testing the cosmological principle of isotropy: Local power-spectrum estimates of the WMAP data. Monthly Notes of the Royal Astronomical Society, 354, 641–665.CrossRefGoogle Scholar
  38. Harrison, E. R. (1974). Cosmological principles. II—Physical principles. Comments on Astrophysics and Space Physics, 6, 29–35.Google Scholar
  39. Harrison, E. (2000). Cosmology. The science of the universe . (2nd edn.). Cambridge: Cambridge University Press.Google Scholar
  40. Hawking, S. W., & Ellis, G. F. R. (1973). The large-scale structure of space-time. Cambridge: Cambridge University Press.Google Scholar
  41. Heller, M. (2003). Creative tension: Essays on science and religion. Cambridge: Templeton Foundation Press.Google Scholar
  42. Hoefer, C. (1994). Einstein’s struggle for a Machian gravitation theory. Studies in History and Philosophy of Modern Physics, 25, 287–335.Google Scholar
  43. Hübner, K. (1977). Ist das Universum nur eine Idee? Eine Analyse der relativistischen Kosmologie. Allgemeine Zeitschrift für Philosophie, 2, 1–20.Google Scholar
  44. Isham, C. J. (1999). Modern differential geometry for physicists. (2nd edn.). Singapore: World Scientific.Google Scholar
  45. Kanitscheider, B. (1991). Kosmologie. (2nd edn.). Stuttgart: Philipp Reclam jun.Google Scholar
  46. Kerszberg, P. (1989). The invented universe. The Einstein- de Sitter controversy (1916–1917) and the rise of relativistic cosmology. Oxford: Clarendon Press.Google Scholar
  47. Kolb, E. W., & Turner, M. S. (1990). The early universe. Redwood City (CA): Addison-WesleyGoogle Scholar
  48. Kragh, H. (2007). Conceptions of cosmos. From myths to the accelerating universe: A history of cosmology. Oxford: Oxford University Press.Google Scholar
  49. Lahav, O. (2001). Observational tests for the Cosmological Principle and world models. In R. G. Crittenden, & N. G. Turok (Eds.), NATO ASIC Proc. 565: Structure Formation in the Universe (pp. 131–+).Google Scholar
  50. Laudan, L. (1990). Demystifying underdetermination. In C. W. Savage (Ed.), Scientific theories (pp. 267–297). Minneapolis: University of Minnesota Press.Google Scholar
  51. Lew, B., & Roukema, B. (2008). A test of the Poincaré dodecahedral space topology hypothesis with the WMAP CMB data. Astronomy and Astrophysics, 482, 747–753.CrossRefGoogle Scholar
  52. Luminet, J.- P., & Roukema, B. F. (1999). Topology of the universe: Theory and observation. In: NATO ASIC Proc. 541: Theoretical and Observational Cosmology (pp. 117–+). Preprint available under http://arxiv.org/abs/astro-ph/9901364.
  53. Luminet, J.- P., Weeks, J. R., Riazuelo, A., Lehoucq, R., & Uzan, J.-P. (2003). Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature, 425, 593–595.CrossRefGoogle Scholar
  54. Malament, D. (1977). Observationally indistinguishable space-times. In J. Earman, C. Glymour, & J. Stachel (Eds.), Foundations of space-time theories. Minnesota studies in the philosophy of science (pp. 61–80). Minneapolis: University of Minnesota Press.Google Scholar
  55. Manchak, J. B. (2009a). Can we know the global structure of spacetime? Studies in History and Philosophy of Modern Physics, 40, 53–56.CrossRefGoogle Scholar
  56. Manchak, J. B. (2009b). What is a ’physically reasonable’ spacetime? mimeo http://philsci-archive.pitt.edu/archive/00004506/01/PhysReas.pdf.
  57. McCabe, G. (2004). The structure and interpretation of cosmology: Part I. General relativistic cosmology. Studies in History and Philosophy of Modern Physics, 35, 549–595.CrossRefGoogle Scholar
  58. McVittie, G. C. (1932). Condensations in an expanding universe. Monthly Notices of the Royal Astronomical Society, 92, 500–518.Google Scholar
  59. McVittie, G. C. (1933). The mass-particle in an expanding universe. Monthly Notices of the Royal Astronomical Society, 93, 325–339.Google Scholar
  60. Milne, E. A. (1932). World structure and the expansion of the universe. Nature, 130, 9–10.CrossRefGoogle Scholar
  61. Milne, E. A. (1933). World-structure and the expansion of the universe. Zeitschrift fur Astrophysik, 6, 1–95.Google Scholar
  62. Misner, C. W. (1967). Transport processes in the primordial fireball. Nature, 214, 40–41.CrossRefGoogle Scholar
  63. Misner, C. W. (1968). The isotropy of the universe. Astrophysical Journal, 151, 431–457.CrossRefGoogle Scholar
  64. Misner, C. W. (1969). Mixmaster universe. Physical Review Letters, 22, 1071–1074.CrossRefGoogle Scholar
  65. Morriss, P. (1987). Power. A philosophical analysis, second edition 2002. Manchester: Manchester University Press.Google Scholar
  66. Mukhanov, V. (2005). Physical foundations of cosmology. Cambridge: Cambridge University Press.Google Scholar
  67. Narlikar, J. V. (1983). Introduction to cosmology. Boston: Jones and Bartlett Publishers.Google Scholar
  68. North, J. D. (1965). The measure of the universe. A history of modern cosmology. Oxford: Clarendon Press.Google Scholar
  69. Norton, J. D. (1993). General covariance and the foundations of general relativity: Eight decades of dispute. Reports on Progress in Physics, 56, 791–858.CrossRefGoogle Scholar
  70. Norton, J. D. (1995). Did Einstein stumble: The debate over general covariance. Erkenntnis, 42, 223–245. reprinted in Majer, U. & Schmidt, H.-J. (Eds.), Reflections on Spacetime: Foundations, Philosophy, History. Berlin: Springer.Google Scholar
  71. Norton, J. D. (2003). A material theory of induction. Philosophy of Science, 70, 647–670.CrossRefGoogle Scholar
  72. Norton, J. (2005). A little survey of induction. In P. Achinstein (Ed.), Scientific evidence: Philosophical theories and applications (pp. 9–34). Baltimore: Johns Hopkins University Press.Google Scholar
  73. Norton, J. D. (2008). Must evidence underdetermine theory?. In M. Carrier, D. Howard, & J. Kourany (Eds.), The challenge of the social and the pressure of practice: Science and values revisited (pp. 17–44). Pittsburgh: University of Pittsburgh Press.Google Scholar
  74. Norton, J. D. (2009). Observationally indistinguishable spacetimes: A challenge for any inductivist, mimeo, http://philsci-archive.pitt.edu/archive/00004505/01/Norton_Obs_Equiv.pdf.
  75. Peacock, J. A. (1999). Cosmological physics. Cambridge: Cambridge University Press.Google Scholar
  76. Peebles, P. J. E. (1993). Principles of physical cosmology. Princeton, New Jersey: Princeton University Press.Google Scholar
  77. Perlmutter, S. et al. (1999). Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophysical Journal, 517, 565–586.CrossRefGoogle Scholar
  78. Psillos, S. (1999). Scientific realism: How science tracks truth. London: RoutledgeGoogle Scholar
  79. Rindler, W. (1977). Essential relatvity. Special, general, and cosmological. (2nd edn.). New York: J. Springer.Google Scholar
  80. Roukema, B. F. & Edge, A. C. (1997). Constraining cosmological topology via highly luminous X-ray clusters. Monthly Notices of the Royal Astronomical Society, 292, 105–112.Google Scholar
  81. Roukema, B. F., Lew, B., Cechowska, M., Marecki, A., & Bajtlik, S. (2004). A hint of Poincaré dodecahedral topology in the WMAP first year sky map. Astronomy and Astrophysics, 423, 821–831.CrossRefGoogle Scholar
  82. Sarkar, P., Yadav, J., Pandey, B., & Bharadwaj, S. (2009). The scale of homogeneity of the galaxy distribution in SDSS DR6. Monthly Notes of the Royal Astronomical Society, 399, L128–L131.CrossRefGoogle Scholar
  83. Sklar, L. (1995). Physics and chance. Cambridge: Cambridge University Press.Google Scholar
  84. Stanford, K. (2009). Underdetermination of scientific theory. In: E. N. Zalta (Ed.) The Stanford Encyclopedia of Philosophy, fall 2009 ed.Google Scholar
  85. Stoeger, W., Maartens, R., & Ellis, G. F. R. (1995). Proving almost-homogeneity of the universe: an almost-Ehlers, Geren and Sachs theorem. Astrophysical Journal, 443, 1–5, gr-qc/0508100.Google Scholar
  86. Swinburne, R. G. (1966). Cosmological horizons. Philosophy of Science, 66, 210–214.CrossRefGoogle Scholar
  87. Tegmark, M., Zaldarriaga, M., & Hamilton, A. J. (2001). Towards a refined cosmic concordance model: Joint 11-parameter constraints from the Cosmic Microwave Background and large-scale structure. Physical Review D, 63(4), 043007.1–14.Google Scholar
  88. Torretti, R. (2000). Spacetime models for the world. Studies in History and Philosophy of Modern Physics, 31, 171–186.CrossRefGoogle Scholar
  89. van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.CrossRefGoogle Scholar
  90. Wald, R. M. (1984). General relativity. Chicago: University of Chicago Press.Google Scholar
  91. Weinberg, S. (1972). Gravitation and cosmology. New York: J. Wiley.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institut für Philosophie und PolitikwissenschaftTechnische Universität DortmundDortmundGermany

Personalised recommendations