Advertisement

Journal for General Philosophy of Science

, Volume 37, Issue 2, pp 225–256 | Cite as

Privileged, Typical, or not even that? – Our Place in the World According to the Copernican and the Cosmological Principles

  • Claus BeisbartEmail author
  • Tobias Jung
Article

Summary

If we are to constrain our place in the world, two principles are often appealed to in science. According to the Copernican Principle, we do not occupy a privileged position within the Universe. The Cosmological Principle, on the other hand, says that our observations would roughly be the same, if we were located at any other place in the Universe. In our paper we analyze these principles from a logical and philosophical point of view. We show how they are related, how they can be supported and what use is made of them. Our main results are: 1. There is a logical gap between both principles insofar as the Cosmological Principle is significantly stronger than the Copernican Principle. 2. A step that is often taken for establishing the Cosmological Principle on the base of the Copernican Principle and observations is not incontestable as it stands, but can be supplemented with a different argument. 3. The Cosmological Principle might be crucial for cosmology to the extent it is not supported by empirical evidence.

Keywords

Cosmology Cosmological Principle Copernican Principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrow J. D. and Tipler F. J. (1989). The Anthropic Cosmological Principle. Oxford University Press, OxfordGoogle Scholar
  2. Beisbart, C.: 2007, ‘Is Scientific Knowledge about the Universe Possible? – Semantic and Epistemological Issues in Physic Cosmology’, In preparation.Google Scholar
  3. Bondi H. (1952). Cosmology. Cambridge University Press, CambridgeGoogle Scholar
  4. Bondi H. and Gold T. (1948). ‘The Steady-State Theory of the Expanding Universe’. Monthly Notices of the Royal Astronomical Society 198, 252-270Google Scholar
  5. Buchert T. (2000). ‘On Average Properties of Inhomogeneous Fluids in General Relativity: Dust Cosmologies’. General Relativity and Gravitation 32, 105-125CrossRefGoogle Scholar
  6. Buchert T. and Ehlers J. (1997). ‘Averaging Inhomogeneous Newtonian Cosmologies’. Astronomy & Astrophysics 307, 1-7Google Scholar
  7. Carroll S. M. (2004). Spacetime and Geometry. An Introduction to General Relativity. Addison Wesley, San FranciscoGoogle Scholar
  8. Carter B. (1974). ‘Large Number Coincidences and the Anthropic Principle in Cosmology’. IAU Symp. 63 Confrontation of Cosmological Theories with Observational Data. 63, 291-298Google Scholar
  9. Coles P. and Lucchin F. (1997). Cosmology. The Origin and Evolution of Cosmic Structure. John Wiley & Sons, ChichesterGoogle Scholar
  10. Copernicus N. (1965). ‘On the Revolutions of the Heavenly Spheres’. In: Munitz M. K. (eds) Theories of the Universe. From Babylonian Myth to Modern Science. Free Press, New York, pp 149-173Google Scholar
  11. Einstein, A.: 1917, ‘Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie’, Sitzungsberichte der Preußischen Akademie der Wissenschaften, pp. 142–152. English translation in: Lorentz, H. A. et al.: The Principle of Relativity. A Collection of Original Memoirs on the Special and General Theory of Relativity, Methuen, London, pp. 175–188.Google Scholar
  12. Einstein, A.: 1931, ‘Zum kosmologischen Problem der allgemeinen Relativitätstheorie’, in Sitzungsberichte der Preußischen Akademie der Wissenschaften 96, 235–237.Google Scholar
  13. Ellis, G.~F.~R.: 1975, ‘Cosmology and Verifiability’, Quarterly Journal of the Royal Astronomical Society 16, 245–264; partly reprinted in J. Leslie (ed.), Physical Cosmology and Philosophy, MacMillan, London 1990, pp. 113–120.Google Scholar
  14. Ellis G.F.R. (1984). ‘Relativistic Cosmology – Its Nature, Aims and Problems’. In: Bertotti B., de Felice F., Pascolini A. (eds) General Relativity and Gravitation. Reidel, Dordrecht, pp 215-288Google Scholar
  15. Ellis G.F.R. (1999). ‘Before the Beginning: Emerging Questions and Uncertainties’. Astrophysics and Space Science 269, 691-718CrossRefGoogle Scholar
  16. Ellis G.F.R., Harrison E.R. (1974). ‘Cosmological Principles I. Symmetry Principles’. Comments on Astrophysics and Space Physics 6, 23-27Google Scholar
  17. Ellis G.F.R., Maartens R., Nel S.D. (1978). ‘The Expansion of the Universe’. Monthly Notices of the Royal Astronomical Society 184: 439-465Google Scholar
  18. Friedmann A.A.: 1922, ‘Über die Krümmung des Raumes’, Zeitschrift für Physik 10, 377–386. English translation in Lang K.R.and Gingerich O. (eds.), A Source Book in Astronomy and Astrophysics: 1900–1975, Harvard University Press, Cambridge (MA), pp. 839–843Google Scholar
  19. Gonzalez G., Brownlee D., Ward P.D. (2001), Refuge for Life in a Hostile Universe’. Scientific American 285/4: 52–59CrossRefGoogle Scholar
  20. Gott J.R.III (1993), ‘Implications of the Copernican Principle for our Future Prospects’. Nature 363, 315–319CrossRefGoogle Scholar
  21. Harrison E.R. (2001), Cosmology The Science of the Universe, 2nd edition. Cambridge University Press, CambridgeGoogle Scholar
  22. Hawking S.W., Ellis G.F.R. (1995) The Large Scale Structure of Spacetime. Cambridge University Press, CambridgeGoogle Scholar
  23. Jung T. (2006), ‘Jenseits von Zentrum und Rand – Eine wissenschaftshistorische Untersuchung zur Entstehung und Entwicklung des Kopernikanischen und des Kosmologischen Prinzips’, to appear in Beiträge zur Astronomiegeschichte 9.Google Scholar
  24. Krasiński A. (1997), Inhomogeneous Cosmological Models. Cambridge University Press, CambridgeGoogle Scholar
  25. Lemaître G.E.: 1927, ‘Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques’, Annales de la Société Scientifique de Bruxelles 47, 49–59. English version: Monthly Notices of the Royal Astronomical Society 91, 483–490Google Scholar
  26. MacCallum M.A.H. (1979), ‘Anisotropic and Inhomogeneous Relativistic Cosmologies’. In: Hawking S.W., Israel W. (eds), General Relativity. An Einstein Centenary Survey, Cambridge University Press, Cambridge: 1979, pp. 533–580 and 874–883Google Scholar
  27. Madsen M.S. (1995), The Dynamic Cosmos. Chapman & Hall, LondonGoogle Scholar
  28. Milne E.A. (1935), Relativity, Gravitation and World Structure. Clarendon Press, OxfordGoogle Scholar
  29. Misner C.W., Thorne K.S., Wheeler J.A. (1973), Gravitation. Freeman, San FranciscoGoogle Scholar
  30. Narlikar J.V. (1979), Lectures on General Relativity and Cosmology. MacMillan, LondonGoogle Scholar
  31. North J.D. (1965), The Measure of the Universe. Clarendon Press, OxfordGoogle Scholar
  32. Peacock J.A. (1999), Cosmological Physics. Cambridge University Press, CambridgeGoogle Scholar
  33. Rindler W. (1977), Essential Relativity Special, General, and Cosmological. Springer, New YorkGoogle Scholar
  34. Roos M. (1997), Introduction to Cosmology. Wiley & Sons, ChicesterGoogle Scholar
  35. Rowan-Robinson M. (1981), Cosmology. Clarendon Press, OxfordGoogle Scholar
  36. Schutz B. (1995), Geometrical Methods of Mathematical Physics. Cambridge University Press, CambridgeGoogle Scholar
  37. Sciama D.W. (1959), The Unity of the Universe. Faber and Faber, LondonGoogle Scholar
  38. Spergel D.N. et al. (2003), ‘First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters’. Astrophysical Journal Suppl. 148, 175–194CrossRefGoogle Scholar
  39. Stoeger W.R., Maartens R., Ellis G.F.R. (1995),‘Proving Almost-Homogeneity of the Universe: An Almost Ehlers-Geren-Sachs Theorem’. Astrophysical Journal 443, 1–5CrossRefGoogle Scholar
  40. Turok N. (1997), Critical Dialogues in Cosmology. World Scientific, SingaporeGoogle Scholar
  41. Wald R.M. (1984), General Relativity. The University of Chicago Press, ChicagoGoogle Scholar
  42. Walker A.G. (1936), ‘On Milne’s Theory of World-structure’. Proceedings of the London Mathematical Society 42, 90–127CrossRefGoogle Scholar
  43. Walker A.G. (1944), ‘Completely Symmetric Spaces’. Journal of the London Mathematical Society 19, 219–226Google Scholar
  44. Weinberg S. (1971), Gravitation and Cosmology. John Wiley and Sons, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute for Philosophy, Faculty 14University of DortmundDortmundGermany
  2. 2.Lehrstuhl für Philosophie und WissenschaftstheorieUniversität AugsburgAugsburgGermany

Personalised recommendations