Journal of Electronic Testing

, Volume 35, Issue 3, pp 367–381 | Cite as

Assessing the Reliability of Successive Approximate Computing Algorithms under Fault Injection

  • Gennaro S. Rodrigues
  • Ádria Barros de Oliveira
  • Fernanda Lima Kastensmidt
  • Vincent Pouget
  • Alberto Bosio


This work presents two fault injection and dependability test methodologies exploring the fault tolerance of successive approximation algorithms. This type of approximate computing algorithm can present an inherent fault tolerance, converging to a final correct output even under faults affecting processed data. A set of algorithms was implemented as embedded software in the ARM Cortex A9 processor of Xilinx Zynq-7000 series board. Experiments consist of exposing the decapsulated processor to laser beams targeting the data cache memory and emulation fault injections at the register file. Results show that successive approximation is effective in protecting the output from faults injected at the data cache memory, but not from the ones injected at the register file. The experiments also show that most of the silent data corruption errors provoked by data cache fault injections are not significant and can be accepted as correct by merely tolerating a result variation of as little as 1%.


Reliability Fault tolerance Approximate computing Laser Fault injection 



  1. 1.
    Chapter two: The method of successive approximations. In: Bellman R, Cooke KL, Lockett JA (eds) Algorithms Graphs and Computers. Mathematics in Science and Engineering, vol 62, pp 49– 100. Elsevier (1970).
  2. 2.
    Anghel L, Benabdenbi M, Bosio A, Traiola M, Vatajelu EI (2018) Test and reliability in approximate computing. Journal of Electronic Testing.
  3. 3.
    Baumann RC (2005) Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans Device Mater Reliab 5(3):305–316. CrossRefGoogle Scholar
  4. 4.
    Buchner SP, Miller F, Pouget V, McMorrow DP (2013) Pulsed-laser testing for single-event effects investigations. IEEE Trans Nucl Sci 60(3):1852–1875. CrossRefGoogle Scholar
  5. 5.
    Han J, Orshansky M (2013) Approximate computing: an emerging paradigm for energy-efficient design. In: Proc 18th IEEE European Test Symposium (ETS), pp 1–6.
  6. 6.
    Kooli M, Di Natale G, Bosio A (2019) Memory-aware design space exploration for reliability evaluation in computing systems. Journal of Electronic Testing.
  7. 7.
    Leveugle R, Calvez A, Maistri P, Vanhauwaert P (2009) Statistical fault injection: Quantified error and confidence. In: Proc design, Automation Test in Europe Conference Exhibition, pp 502–506.
  8. 8.
    Nair R (2014) Big data needs approximate computing: technical perspective. Commun ACM 58(1):104–104. CrossRefGoogle Scholar
  9. 9.
    de Oliveira ÁB, Tambara LA, Kastensmidt FL (2017) Exploring Performance Overhead Versus Soft Error Detection in Lockstep Dual-Core ARM Cortex-A9 Processor Embedded into Xilinx Zynq APSoc, pp 189–201. Springer International Publishing, ChamCrossRefGoogle Scholar
  10. 10.
    Pouget V, Douin A, Foucard G, Peronnard P, Lewis D, Fouillat P, Velazco R (2008) Dynamic testing of an sram-based fpga by time-resolved laser fault injection. In: Proc 14th IEEE International On-line Testing Symposium, pp 295–301.
  11. 11.
    Pouget V, Jonathas S, Job R, Vaillé J, Wrobel F, Saigné F (2017) Structural pattern extraction from asynchronous two-photon laser fault injection using spectral analysis, vol 76-77.
  12. 12.
    Rajesh G, Vinayagasundaram B, Moorthy GS (2014) Data fusion in wireless sensor network using simpson’s 3/8 rule. In: Proc International Conference on Recent Trends in Information Technology, pp 1–5.
  13. 13.
    Rodrigues GS, Kastensmidt FL (2017) Evaluating the behavior of successive approximation algorithms under soft errors. In: Proc 18th IEEE Latin American Test Symposium (LATS), pp 1–6.
  14. 14.
    Rodrigues GS, Kastensmidt FL, Pouget V, Bosio A (2018) Exploring the inherent fault tolerance of successive approximation algorithms under laser fault injection. In: Proc 19th IEEE Latin-american Test Symposium (LATS), pp 1–6.
  15. 15.
    Trichina E, Korkikyan R (2010) Multi fault laser attacks on protected crt-rsa. In: Proc. Workshop on Fault Diagnosis and Tolerance in Cryptography, pp 75–86.
  16. 16.
    Venkataramani S, Chakradhar ST, Roy K, Raghunathan A (2015) Approximate computing and the quest for computing efficiency. In: Proc 52nd Annual Design Automation Conference, DAC ’15. ACM, New York, pp 120:1–120:6.
  17. 17.
    Vollmer M (2004) Numerical integration of pdes for safety critical applications implemented by i&c systems. In: Heisel M, Liggesmeyer P, Wittmann S (eds) Computer Safety, Reliability, and Security. Springer, Berlin, pp 269–282Google Scholar
  18. 18.
    Xu Q, Mytkowicz T, Kim NS (2016) Approximate computing: a survey. IEEE Design Test 33(1):8–22. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gennaro S. Rodrigues
    • 1
  • Ádria Barros de Oliveira
    • 1
  • Fernanda Lima Kastensmidt
    • 1
  • Vincent Pouget
    • 2
  • Alberto Bosio
    • 3
  1. 1.Porto AlegreBrazil
  2. 2.MontpellierFrance
  3. 3.LyonFrance

Personalised recommendations