Journal of Electronic Testing

, Volume 33, Issue 1, pp 37–51 | Cite as

Radiation-Induced Fault Simulation of SOI/SOS CMOS LSI’s Using Universal Rad-SPICE MOSFET Model

  • Konstantin O. PetrosyantsEmail author
  • Lev M. Sambursky
  • Igor A. Kharitonov
  • Boris G. Lvov


The methodology of modeling and simulation of environmentally induced faults in radiation hardened SOI/SOS CMOS IC’s is presented. It is realized at three levels: CMOS devices – typical analog or digital circuit fragments – complete IC’s. For this purpose, a universal compact SOI/SOS MOSFET model for SPICE simulation software with account for TID, dose rate and single event effects is developed. The model parameters extraction procedure is described in great depth taking into consideration radiation effects and peculiarities of novel radiation-hardened (RH) SOI/SOS MOS structures. Examples of radiation-induced fault simulation in analog and digital SOI/SOS CMOS LSI’s are presented for different types of radiation influence. The simulation results show the difference with experimental data not larger than 10–20% for all types of radiation.


SOI CMOS circuits Fault modeling and simulation Radiation hardness TID Dose rate Single events Compact SPICE models Novel RH SOI MOS structures Model parameter extraction 



This work was supported in part by the Academic Fund Program at the National Research University Higher School of Economics in 2015, grant No. 15-01-0165, and Russian Foundation for Basic Research, grant No.14-29-09145.


  1. 1.
    Alvarado J, Boufouss E, Kilchytska V, Flandre D (2010) Compact model for single event transients and total dose effects at high temperatures for partially depleted SOI MOSFETs. Microelectron Reliab 50:1852–1856CrossRefGoogle Scholar
  2. 2.
    Bu J, Bi J, Liu M, Han Z (2011) A total dose radiation model for deep submicron PDSOI NMOS. J Semi 32(1):014002-1–014002-3Google Scholar
  3. 3.
    Cristoloveanu S, Li S (1995). Electrical characterization of silicon-on-insulator materials and devices (Vol. 305). Springer Science & Business MediaGoogle Scholar
  4. 4.
    Dodd PE, Shaneyfelt MR, Schwank JR, Felix JA (2010) Current and future challenges in radiation effects on CMOS electronics. IEEE T Nucl Sci 57(4):1747–1763CrossRefGoogle Scholar
  5. 5.
    Faruk MG, Wilkins R, Dwivedi RC, Kalaria D, Patel M, Binzaid S, Attia JO (2012) Proton and neutron radiation effects studies of MOSFET transistors for potential deep-space mission applications. Aerosp Conf Proc: 1–13Google Scholar
  6. 6.
    Ferlet-Cavrois V, Marcandella C, Giraud G, Gasiot G, Colladant I, Musseau O, Fenouillet C, du Port de Poncharra J (2002) Characterization of the parasitic bipolar amplification in SOI technologies submitted to transient irradiation. IEEE T Nucl Sci 49(3):1456–1461CrossRefGoogle Scholar
  7. 7.
    Ferlet-Cavrois V, Paillet P, Gaillardin M, Lambert D, Baggio J, Schwank JR, Faynot O (2006) Statistical analysis of the charge collected in SOI and bulk devices under heavy lon and proton irradiation—Implications for digital SETs. IEEE T Nucl Sci 53(6):3242–3252CrossRefGoogle Scholar
  8. 8.
    Huang X, Francis AM, Lostetter AB, Mantooth HA (2004) Compact modeling of environmentally induced radiation effects on electrical devices. Aerosp Conf Proc 4:2597–2607Google Scholar
  9. 9.
    Kauppila JS, Sternberg AL, Alles ML et al (2009) A bias-dependent single-event compact model implemented into BSIM4 and a 90 nm CMOS Process Design Kit. IEEE T Nucl Sci 56(6):3152–3157CrossRefGoogle Scholar
  10. 10.
    Li Y, Niu G, Cressler JD, Patel J, Marshall CJ, Marshall PW, Palmer MJ (2001) Anomalous radiation effects in fully depleted SOI MOSFETs fabricated on SIMOX. IEEE T Nucl Sci 48(6):2146–2151CrossRefGoogle Scholar
  11. 11.
    Liu HY, Golke KW, Liu ST (2015) A new dose rate model for SOI MOSFET and its implementation in SPICE. IEEE Int SOI Conf: 112–113Google Scholar
  12. 12.
    Liu J, Zhou J, Luo H, Kong X, En Y, Shi Q, He Y (2010) Total-dose-induced edge effect in SOI NMOS transistors with different layouts. Microelectron Reliab 50(1):45–47CrossRefGoogle Scholar
  13. 13.
    Massengill LW, Diehl-Nagle SE (1984) Transient radiation upset simulations of CMOS memory circuits. IEEE T Nucl Sci NS-31:1337–1343CrossRefGoogle Scholar
  14. 14.
    Nowlin N, Bailey J, Turfler B, Alexander D (2004) A total-dose hardening-by-design approach for high-speed mixed-signal CMOS integrated circuits. Int J High Speed Electron 14(2):367–378CrossRefGoogle Scholar
  15. 15.
    Petrosjanc KO, Adonin AS, Kharitonov IA, Sicheva MV (1994) SOI device parameter investigation and extraction for VLSI radiation hardness modeling with SPICE. Proc IEEE Intl Conf Microelectron Test Struct 7:126–129Google Scholar
  16. 16.
    Petrosjanc KO, Kharitonov IA (1993) VLSI device parameters extraction for radiation hardness modeling with SPICE. Proc IEEE Int Conf Microelectron Test Struct: 9–14Google Scholar
  17. 17.
    Petrosyants KO, Kharitonov IA, Orekhov EV, Sambursky LM, Yatmanov AP (2009) Simulation of Radiation Effects in SOI CMOS Circuits with BSIMSOI-RAD macromodel. Proc 7th IEEE East-West Design Test Int Symp (EWDTS) 243–246Google Scholar
  18. 18.
    Petrosyants KO, Kharitonov IA, Sambursky LM, Bogatyrev VN, Povarnitcyna ZM, Drozdenko ES (2012) Simulation of total dose influence on analog-digital SOI/SOS CMOS circuits with EKV-RAD macromodel. Proc. 10th IEEE East-West Design & Test Int. Symp. (EWDTS) 60–65Google Scholar
  19. 19.
    Petrosyants KO, Kharitonov IA, Sambursky LM, Mokeev AS (2015) Rad-hard versions of SPICE MOSFET models for effective simulation of SOI/SOS CMOS circuits taking into account radiation effects. Proc. Int Conf Radiat Effects Component Syst (RADECS-2015) 1–4Google Scholar
  20. 20.
    Petrosyants KO, Kharitonov IA, Sambursky LM (2013) Hardware-software subsystem for MOSFETs characteristic measurement and parameter extraction with account for radiation effects. Adv Mat Res 718–720:750–755Google Scholar
  21. 21.
    Petrosyants KO, Sambursky LM, Kharitonov IA, Lvov BG (2016) Fault simulation in radiation-hardened SOI CMOS VLSIs using universal compact MOSFET model. 2016 17th Latin-American Test Symposium (LATS):117–122Google Scholar
  22. 22.
    Petrosyants KO, Sambursky LM, Kharitonov IA, Yatmanov AP (2011) SOI/SOS MOSFET compact macromodel taking into account radiation effects. Russian Microelectron 40(7):457–462CrossRefGoogle Scholar
  23. 23.
    Sanchez Esqueda I, Barnaby HJ, King MP (2015) Compact modeling of total ionizing dose and aging effects in MOS technologies. IEEE T Nucl Sci 62(4):1501–1515CrossRefGoogle Scholar
  24. 24.
    Schwank JR, Ferlet-Cavrois V, Shaneyfelt MR, Paillet P, Dodd PE (2003) Radiation effects in SOI technologies. IEEE T Nucl Sci 50(3):522–538CrossRefGoogle Scholar
  25. 25.
    Sexton FW, Schwank JR (1985) Correlation of radiation effects in transistors and integrated circuits. IEEE T Nucl Sci 32(6):3975–3981CrossRefGoogle Scholar
  26. 26.
    Sterpone L (2013) SEL-UP: a CAD tool for the sensitivity analysis of radiation-induced single event latch-up. Microelectron Reliab 53(9):1311–1314CrossRefGoogle Scholar
  27. 27.
    Wirth GI, Vieira MG, Kastensmidt FGL (2007) Accurate and computer efficient modelling of single event transients in CMOS circuits. IET Circ Device Syst 1(2):137–142CrossRefGoogle Scholar
  28. 28.
    Zebrev GI, Gorbunov MS (2009) Modeling of radiation-induced leakage and low dose-rate effects in thick edge isolation of modern MOSFETs. IEEE T Nucl Sci 56(4):2230–2236CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Konstantin O. Petrosyants
    • 1
    • 2
    Email author
  • Lev M. Sambursky
    • 1
    • 2
  • Igor A. Kharitonov
    • 1
  • Boris G. Lvov
    • 1
  1. 1.Department of Electronics Engineering, Moscow Institute of Electronics and MathematicsNational Research University Higher School of EconomicsMoscowRussia
  2. 2.Department of Analog Circuits Design Automation, Institute for Design Problems in MicroelectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations