Journal of Electronic Testing

, Volume 29, Issue 2, pp 127–141 | Cite as

On the Simulation of HCI-Induced Variations of IC Timings at High Level

  • Olivier Heron
  • Clement Bertolini
  • Chiara Sandionigi
  • Nicolas Ventroux
  • Francois Marc
Article

Abstract

Die shrinking combined with the non-ideal scaling of voltage increases the probability of MOS transistors to encounter HCI. This mechanism causes timing degradation and possibly failures in ICs. The evaluation of timing degradation early in the design flow becomes a must-have to ensure the expected time-to-market and IC lifetime. In this paper, we propose a framework for simulating and analyzing the HCI-induced timing variations at high abstraction level. We first present a bottom-up approach to move information about timing degradation up to the higher abstraction layers. Then, we describe a simulation framework for analyzing the HCI-induced timing variations, and we evaluate its performance and accuracy. Finally, by considering a sample processor, we analyze the impact of the instruction set architecture on slack times and critical paths.

Keywords

Hot carrier injection Timing degradation 

References

  1. 1.
    Accellera Systems Initiative (2009) SystemC 2.2Google Scholar
  2. 2.
    Araujo C, Gomes M, Barros E, Rigo S, Azevedo R, Araujo G (2007) Platform designer: an approach for modeling multiprocessor platforms based on SystemC. In: Design automation for embedded systems Proc, vol 10, pp 253–283Google Scholar
  3. 3.
    Bechara C, Berhault A, Ventroux N, Chevobbe S, Lhuillier Y, David R, Etiemble D (2011) A small footprint interleaved multithreaded processor for embedded systems. In: IEEE ICECS Proc, pp 685–690Google Scholar
  4. 4.
    Bechara C, Ventroux N, Etiemble D (2010) Towards a parameterizable cycle-accurate ISS in ArchC. In: ACS/IEEE AICCSA Proc, pp 1–7Google Scholar
  5. 5.
    Beltrame G, Bolchini C, Fossati L, Miele A, Sciuto D (2008) ReSP: a non-intrusive transaction-level reflective MPSoC simulation platform for design space exploration. In: ASP-DAC Proc, pp 673–678Google Scholar
  6. 6.
    Bernstein JB, Gurfinkel M, Li X, Walters J, Shapira Y, Talmor M (2006) Electronic circuit reliability modelling. In: Elsevier microelectronics reliability Journ, vol 46, pp 1957–1979Google Scholar
  7. 7.
    Bertolini C, Heron O, Ventroux N, Marc F (2012) Relation between HCI-induced performance degradation and applications in a RISC processor. In: IEEE IOLTS Proc. (to appear)Google Scholar
  8. 8.
    Bravaix A, Guerin C, Huard V, Roy D, Roux J, Vincent E (2009) Hot-Carrier acceleration factors for low power management in DC-AC stressed 40 nm NMOS node at high temperature. In: IEEE IRPS Proc, pp 531–548Google Scholar
  9. 9.
    Brooks D, Dick RP, Joseph R, Shang L (2007) Power, thermal, and reliability modeling in nanometer-scale microprocessors. In: IEEE Micro, vol 27, pp 49–62Google Scholar
  10. 10.
    Coskun AK, Rosing TS, Leblebici Y, Micheli GD (2006) A simulation methodology for reliability analysis in multi-core SoCs. In: GLSVLSI Proc, pp 95–99Google Scholar
  11. 11.
    Fang J, Sapatnekar S (2011) Scalable methods for analyzing the circuit failure probability due to gate oxide breakdown. In: IEEE transactions on VLSI systems, vol 20, pp 1960–1973Google Scholar
  12. 12.
    Gupta T, Bertolini C, Heron O, Ventroux N, Zimmer T, Marc F (2010) RAAPS: Reliability aware ArchC based processor simulator. In: IEEE IIRW Proc, pp 153–156Google Scholar
  13. 13.
    Gupta T, Heron O, Ventroux N, Zimmer T, Marc F, Bertolini C (2012) Impact of power consumption and temperature on processor lifetime reliability. In: Journal of low power electronics (JOLPE), vol 8, pp 83–94Google Scholar
  14. 14.
    Guthaus M, Ringenberg J, Ernst D, Austin T, Mudge T, Brown R (2001) MiBench: a free, commercially representative embedded benchmark suite. In: IEEE WWC-4, pp 3–14Google Scholar
  15. 15.
    Hennessy J, Patterson DA (2003) Computer architecture: a quanitative approach, 3rd edn. Morgan KaufmannGoogle Scholar
  16. 16.
    Huang L, Xu Q (2010) AgeSim: a simulation framework for evaluating the lifetime reliability of processor-based SoCs. In: ACM DATE Proc, pp 51–56Google Scholar
  17. 17.
    Huard V, Ruiz N, Cacho F, Pion E (2011) A bottom-up approach for system-on-chip reliability. In: Elsevier microelectronics reliability, vol 51, pp 1425–1439Google Scholar
  18. 18.
    International technology roadmap for semiconductors (2009) Process integration, devices, and structures (Ed.)Google Scholar
  19. 19.
    Joint Electron Device Engineering Council (2010) Failure mechanisms and models for semiconductor devices. JEDEC publication no JEP122FGoogle Scholar
  20. 20.
    Kavvadias N, Nikolaidis S (2008) Elimination of overhead operations in complex loop structures for embedded microprocessors. In: IEEE Trans Comput, vol 57, pp 200–214Google Scholar
  21. 21.
    Lee P, Kuo M, Seki K, Lo P, Hu C (1988) Circuit aging simulator (CAS). In: IEDM technical digest, pp 134–137Google Scholar
  22. 22.
    Lorenz D, Barke M, Schlichtmann U (2010) Aging analysis at gate and macro cell level. In: IEEE/ACM ICCAD Proc, pp 77–84Google Scholar
  23. 23.
    Lu Y, Shang L, Zhou H, Zhu H, Yang F, Zeng X (2009) Statistical reliability analysis under process variation and aging effects. In: ACM/IEEE DAC Proc, pp 514–519Google Scholar
  24. 24.
    MentorGraphics (2011) Model technology ModelSim SE 10.0dGoogle Scholar
  25. 25.
    Po LM, Ma WC (1996) A novel four-step search algorithm for fast block motion estimation. In: IEEE trans on circuits and systems for video technology, vol 6, pp 313–317Google Scholar
  26. 26.
    Rigo S, Araujo G, Bartholomeu M, Azevedo R (2004) ArchC: a SystemC based architecture description language. In: SBAC-PAD Proc, pp 66–73Google Scholar
  27. 27.
    de Schultz MR, Mendonca AKI, Carvalho FG, Furtado OJV, Santos LCV (2007) Automatically-retargetable model-driven tools for embedded code inspection in SoCs. In: MWSCAS Proc, pp 245–248Google Scholar
  28. 28.
    Shin J, Zyuban V, Hu Z, Rivers JA, Bose P (2007) A framework for architecture-level lifetime reliability modeling. In: IEEE/IFIP DSN Proc, pp 534–543Google Scholar
  29. 29.
    Srinivasan J, Adve SV, Bose P, Rivers JA (2005) Lifetime reliability: toward an architectural solution. IEEE Micro Journ 25(3):70–80CrossRefGoogle Scholar
  30. 30.
    Synopsys (2008) Design Compiler B-2008.09-SP1Google Scholar
  31. 31.
    Synopsys (2008) PrimeTime PX 2008.12Google Scholar
  32. 32.
    Takeda E, Suzuki N (1983) An empirical model for device degradation due to Hot-Carrier Injection. In: IEEE electron device letters, vol 4, pp 111–113Google Scholar
  33. 33.
    Tu R, Rosenbaum E, Chan W, Li C, Minami E, Quader K, Ko PK, Hu C (1993) Berkeley reliability tools-BERT. In: Trans on computer-aided design of integrated circuits and systems, vol 12, pp 1524–1534Google Scholar
  34. 34.
    Ventroux N, Guerre A, Sassolas T, Moutaoukil L, Blanc G, Bechara C, David R (2010) SESAM: an MPSoC simulation environment for dynamic application processing. In: IEEE international conference on embedded software and systems (ICESS)Google Scholar
  35. 35.
    Ventroux N, Sassolas T, David R, Blanc G, Guerre A, Bechara C (2010) SESAM extension for fast MPSoC architectural exploration and dynamic streaming application. In: IEEE/IFIP international conference on VLSI and system-on-chip (VLSI-SoC)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Olivier Heron
    • 1
  • Clement Bertolini
    • 1
  • Chiara Sandionigi
    • 1
  • Nicolas Ventroux
    • 1
  • Francois Marc
    • 2
  1. 1.CEA, LIST, Embedded Computing Laboratory, PC172Gif-sur-Yvette CedexFrance
  2. 2.Universite Bordeaux 1, ENSEIRB, UMR 5218 CNRSTalence CedexFrance

Personalised recommendations