Journal of Electronic Testing

, Volume 28, Issue 5, pp 599–614

FPGA-based Novel Adaptive Scheme Using PN Sequences for Self-Calibration and Self-Testing of MEMS-based Inertial Sensors

  • Elie H. Sarraf
  • Ankit Kansal
  • Mrigank Sharma
  • Edmond Cretu
Article

Abstract

We propose a novel adaptive technique based on pseudo-random (PN) sequences for self-calibration and self-testing of MEMS-based inertial sensors (accelerometers and gyroscopes). The method relies on using a parameterized behavioral model implemented on FPGA, whose parameters values are adaptively tuned, based on the response to test pseudo-random actuation of the physical structure. Dedicated comb drives actuate the movable mass with binary maximum length pseudo-random sequences of small amplitude, to keep the device within the linear operating regime. The frequency of the stimulus is chosen within the mechanical spectral operating range of the micro-device, such that the induced response leads to the identification of the mechanical transfer function, and to the tuning of the associated digital behavioral model. In case of a micro-gyroscope, experimental results demonstrate the adaptive tracking of the damping coefficient from 5.57 × 10−5Kg/s to 7.12 × 10−5Kg/s and of the stiffness coefficient from 132 N/m to 137.7 N/m. In the case of a MEMS accelerometer, the damping and stiffness coefficients are correctly tracked from 3.4 × 10−3Kg/s and 49.56 N/m to 4.57 × 10−3Kg/s and 51.48 N/m, respectively—the former values are designer-specified target values, while the latter are experimentally measured parameters for fabricated devices operating in a real environment. Hardware resources estimation confirms the small area the proposed algorithm occupies on the targeted FPGA device.

Keywords

PN sequences Impulse-response FPGA MEMS Accelerometer Gyroscope Self-testing Self-calibration 

References

  1. 1.
    Acar C, Shkel A (2005) An approach for increasing drive-mode bandwidth of MEMS vibratory gyroscopes. J Microelectromech Syst 14(3):520–528. doi:10.1109/JMEMS.2005.844801 CrossRefGoogle Scholar
  2. 2.
    Analog Devices inc, low-g accelerometers, ADXL326: Small, Low Power, 3-Axis ±16 g Accelerometer http://www.analog.com/en/mems/low-g-accelerometers/adxl326/products/product.html. Accessed 11 November 2010
  3. 3.
    Benoit C, Salvador M, Parrain F, Courtois B (2001) Electrically induced stimuli for MEMS self-test. 19th IEEE Proceedings on VLSI Test Symposium, VTS 2001. doi: 10.1109/VTS.2001.923441
  4. 4.
    Chapuis Y-A, Zhou L, Fukuta Y, Mita Y, Fujita H (2007) FPGA-based decentralized control of arrayed MEMS for microrobotic application. IEEE Trans Ind Electron 54(4):1926–1936. doi:10.1109/TIE.2007.898297 CrossRefGoogle Scholar
  5. 5.
    Deb Nilmoni, Blanton RD (Shawn) (2006) Built-In Self-Test of MEMS Accelerometers. J Microelectromech Syst 15(1):52–68. doi: 10.1109/JMEMS.2006.864239
  6. 6.
    Dhayni A, Mir S, Rufer L, Bounceur A, Simeu E (2009) Pseudorandom BIST for test and characterization of linear and nonlinear MEMS. Microelectron J 40(7):1054–1061. doi:10.1016/j.mejo.2008.05.012 CrossRefGoogle Scholar
  7. 7.
    Dumas N, Xu Z, Georgopoulos K, Bunyan R, Richardson A (2007) A novel approach for online sensor testing based on an encoded test stimulus, 12th IEEE European Test Symposium (ETS’07), 105–110. doi: 10.1109/ETS.2007.7
  8. 8.
    Kansal A, Sarraf EH, Sharma M, Cretu E (2011) Novel adaptive FPGA- based self-calibration and self-testing scheme with PN sequences for MEMS-based inertial sensors, IEEE 17th International Mixed-Signals, Sensors and Systems Test Workshop (IMS3TW), Santa Barbara, CA, May 15–18, 2011Google Scholar
  9. 9.
    Measurement Computing inc, USB Data Acquisition, Multifunction DAQ, USB 12-Bit Multifunction Solutions, USB-1208 Series, http://www.mccdaq.com/usb-data-acquisition/USB-1208-Series.aspx, Accessed 11 November 2010
  10. 10.
    Pan C-Y, Cheng K-T (1997) Pseudorandom testing for mixed-signal circuits. IEEE Trans Comput-Aid Des Integr Circ Syst 16(10):1173–1185. doi:10.1109/43.662678 CrossRefGoogle Scholar
  11. 11.
    Puers R, Reyntjens S (2002) RASTA-real-acceleration-for-self-test accelerometer: a new concept for self-testing accelerometers. Sensors Actuators A: Phys 97–98:359–368. doi:10.1016/S0924-4247(02)00023-7 CrossRefGoogle Scholar
  12. 12.
    Roushan R, Saha G, Boni A, Kal S (2006) FPGA implementation of an automobile pollution control system using a MEMS accelerometer. IEEE International Conference on Industrial Technology, 2006. ICIT 2006. doi: 10.1109/ICIT.2006.372467
  13. 13.
    Rufer L, Mir S, Simeu E, Domingues C (2005) On-chip pseudorandom MEMS testing. J Electron Test 21(3):233–241. doi:10.1007/s10836-005-6353-9 CrossRefGoogle Scholar
  14. 14.
    Sharma M, Sarraf EH, Cretu E (2011) Parametric amplification/damping in MEMS gyroscopes. IEEE 24th International Conference on Micro Electro Mechanical Systems, pp 617–620, doi: 10.1109/MEMSYS.2011.5734500
  15. 15.
    STMicroelectronics inc, Motion Sensors (MEMS), Accelerometers, LIS244, ALMEMS motion sensor 2-axis, ±2 g Ultracompact Analog Output Accelerometer, http://www.st.com/internet/analog/product/180471.jsp, Accessed 11 November 2010
  16. 16.
    Xiong X, Wu Y-L, Jone W-B (2005) A dual-mode built-in self-test technique for capacitive MEMS devices. IEEE Trans Instrum Meas 54(5):1739–1750. doi:10.1109/TIM.2005.855094 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Elie H. Sarraf
    • 1
  • Ankit Kansal
    • 2
  • Mrigank Sharma
    • 1
  • Edmond Cretu
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Electrical EngineeringIndian Institute of TechnologyDelhiIndia

Personalised recommendations