Advertisement

Enhanced physical properties of Bi4Ti3O12 modified Bi0.5(Na0.4K0.1)TiO3 lead-free piezoelectric ceramics using crystallographic orientation techniques

  • 16 Accesses

Abstract

In this study, bismuth titanate (Bi4Ti3O12) templates were synthesized through the molten salt method in Na2CO3 and K2CO3 fluxes. The prepared Bi4Ti3O12 templates possessed plate-like morphologies with lengths of 5–20 μm and widths of 0.5–1 μm. They can be used to improve the electrical properties of Bi0.5 (Na0.4K0.1)TiO3 lead-free ceramics by employing template grain growth method at different sintering temperatures (950–1150 °C). The effect of sintering temperature on the physical properties of the 0.9[Bi0.5(Na0.4K0.1)TiO3]-0.1[Bi4Ti3O12] (BNKT-BT) ceramics was investigated and it was found that the degree of orientation of the synthesized ceramics increased along with the sintering temperature, and the highest values were achieved at 1050 οC. However, at 1150 οC, the values for both ceramics started to decrease due to the formation of the Bi2Ti2O7 pyrochlore phase. The ceramics sintered at an optimum temperature of 1050 οC exhibited the best physical properties such as density (ρ), 6.0 g cm−3 (relative density 99.8% of the theoretical value); remanent polarization (Pr), 15.5 μC cm−2; coercive field (Ec), 24.5 Kv/cm; and highest dielectric constant (εmax), 6080.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    W. Pan, M. Cao, J. Qi, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Alloys Compd. 784(5), 1303–1310 (2019)

  2. 2.

    P. Fan, Y. Zhang, Q. Zhang, B. Xie, Y. Zhu, M.A. Mawat, W. Ma, K. Liu, J. Xiao, H. Zhang, J. Eur. Ceram. Soc. 38(13), 4404–4413 (2018)

  3. 3.

    P.D. Gio, H.Q. Viet, L.D. Vuong, Int. J. Mater. Res. 109(11), 1071–1076 (2018)

  4. 4.

    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30(8), 1705171 (2018)

  5. 5.

    K. Shibata, R. Wang, T. Tou, J. Koruza, MRS Bull. 43(8), 612–616 (2018)

  6. 6.

    D.A. Tuan, L.D. Vuong, V.T. Tung, N.N. Tuan, N.T. Duong, J. Ceram. Process. Res. 19(1), 32–36 (2018)

  7. 7.

    D.A. Tuan, V.T. Tung, L.D. Vuong, N.H. Yen, L.T.U. Tu, J. Electron. Mater. 47(10), 6297–6301 (2018)

  8. 8.

    X. Wang, H. Gao, X. Hao, X. Lou, Ceram. Int. 45(4), 4274–4282 (2019)

  9. 9.

    J. Wang, Y. Li, N. Sun, J. Du, Q. Zhang, X. Hao, J. Eur. Ceram. Soc. 39(2), 255–263 (2019)

  10. 10.

    P. Fan, Y. Zhang, S.-T. Zhang, B. Xie, Y. Zhu, M.A. Marwat, W. Ma, K. Liu, L. Shu, H. Zhang, J. Mater. (2019)

  11. 11.

    L.D. Vuong, N. Truong-Tho, Journal of Elec Materi 46(11), 6395–6402 (2017)

  12. 12.

    L.D. Vuong, N.T. Tho, Int. J. Mater. Res. 108(3), 222–227 (2017)

  13. 13.

    H.-C. Thong, C. Zhao, Z.-X. Zhu, X. Chen, J.-F. Li, K. Wang, Acta Mater. 166, 551–559 (2019)

  14. 14.

    G.L. Messing, S. Trolier-McKinstry, E. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. Rehrig, K. Eitel, Critical Reviews in Solid State Materials Sciences Applications 29(2), 45–96 (2004)

  15. 15.

    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu and X. J. A. M. Zhang, 30 (8), 1705171 (2018)

  16. 16.

    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)

  17. 17.

    X. Liu, X. Tan, Advanced materials28(3), 574–578 (2016)

  18. 18.

    H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, J. Rödel, J. Eur. Ceram. Soc. 35(9), 2501–2512 (2015)

  19. 19.

    K. Wang, B. Malič, J. Wu, MRS Bull. 43(8), 607–611 (2018)

  20. 20.

    H.-C. Thong, C. Zhao, Z. Zhou, C.-F. Wu, Y.-X. Liu, Z.-Z. Du, J.-F. Li, W. Gong, K. Wang, Mater. Today (2019)

  21. 21.

    F.J.J.O.I. Lotgering, N. Chemistry 9(2), 113–123 (1959)

  22. 22.

    C.B. Sawyer, C. Tower, Physical review35(3), 269 (1930)

  23. 23.

    L.D. Vuong, P.D. Gio, N.D.V. Quang, T. Dai Hieu, T.P. Nam, J. Electron. Mater. 47(10), 5944–5951 (2018)

  24. 24.

    S.H. Ng, J. Xue, J. Wang, J. Am. Ceram. Soc. 85(11), 2660–2665 (2002)

  25. 25.

    R. Furushima, S. Tanaka, Z. Kato, K. Uematsu, J. Ceram. Soc. Jpn. 118(1382), 921–926 (2010)

  26. 26.

    B.D. Stojanovic, C. Paiva-Santos, C. Jovalekic, A. Simoes, Z. Lazarevic, J.A. Varela, Materials chemistry physics96(2–3), 471–476 (2006)

  27. 27.

    W. McLune, JCPDS International Centre for Diffraction Data (Swarthmore, PA, 1989)

  28. 28.

    Z. Lazarević, B. Stojanović, C. Paiva-Santos, N. Romčević, Ferroelectrics 368(1), 154–162 (2008)

  29. 29.

    S. Naz, S. Durrani, A. Qureshi, M. Hussain and N. Hussain, Journal of thermal analysis and alorimetry114 (2), 719–723 (2013)

  30. 30.

    W. McLune, Swarthmore (PA, Card, 1989)

  31. 31.

    M. Ranieri, E. Aguiar, M. Cilense, A. Simões and J. A. J. C. I. Varela, 39 (7), 7291–7296 (2013)

  32. 32.

    E. C. Aguiar, A. Z. Simões, F. Moura, M. Cilense, E. Longo and J. A. Varela, Processing Application of Ceramics, 1–11 (2011)

  33. 33.

    W. Liu, X. Wang, D. Tian, C. Xiao, Z. Wei, S. Chen, Materials Sciences Applications 1(02), 91 (2010)

  34. 34.

    Z. Zhao, X. Li, H. Ji and M. J. I. F. Deng, 154 (1), 154–158 (2014)

  35. 35.

    T. Kimura, T. Takahashi, T. Tani, Y. Saito, Ceram. Int. 30(7), 1161–1167 (2004)

  36. 36.

    R.P. Gonçalves, F.F. da Silva, P.H. Picciani, M.L. Dias, Materials Sciences Applications 6(02), 189 (2015)

  37. 37.

    M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O. Rojas, Biomacromolecules 11(3), 674–681 (2010)

  38. 38.

    A. Rianjanu, A. Kusumaatmaja, E.A. Suyono, K. Triyana, Heliyon 4(4), e00592 (2018)

  39. 39.

    L. Liu, H. Fan, S. Ke, X. Chen, J. Alloys Compd. 458(1–2), 504–508 (2008)

  40. 40.

    M.S. Alkathy, A. Hezam, K. Manoja, J. Wang, C. Cheng, K. Byrappa, K.J. Raju, J. Alloys Compd. 762, 49–61 (2018)

  41. 41.

    H. Naceur, A. Megriche, M. El Maaoui, Journal of Advanced Ceramics 3(1), 17–30 (2014)

  42. 42.

    Y. Chang, S. Lee, S. Poterala, C.A. Randall, G.L. Messing, Journal of Materials Research26(24), 3044–3050 (2011)

  43. 43.

    D.-d. Wei, Q.-b. Yuan, G.-q. Zhang, H. Wang, J. Mater. Res. 30(14), 2144–2150 (2015)

  44. 44.

    T.G. Lee, H.J. Lee, S.J. Park, T.H. Lee, D.H. Kim, C.H. Hong, H. Xu, C.Y. Kang, S. Nahm, Journal of the American Ceramic Society100(12), 5681–5692 (2017)

  45. 45.

    Z.H. Zhao, M.Y. Ye, H.M. Ji, X.L. Li, X. Zhang, Y. Dai, Mater. Des. 37, 184–191 (2018)

  46. 46.

    N. D. Quan, V. N. Hung and D. D. J. J. O. E. M. Dung, 46 (10), 5814–5819 (2017)

  47. 47.

    H. Dong, X. Zheng, W. Li, Y. Gong, J. Peng, Z. Zhu, J. Appl. Phys. 110(12), 124109 (2011)

  48. 48.

    Y.F. Kargin, S. Ivicheva, V. Volkov, Russ. J. Inorg. Chem. 60(5), 619–625 (2015)

  49. 49.

    K. Fuse and T. J. J. O. T. A. C. S. Kimura, 89 (6), 1957–1964 (2006)

  50. 50.

    X. Jing, Y. Li, Q. Yang, J. Zeng, Q. Yin, Ceramics international30(7), 1889–1893 (2004)

  51. 51.

    M. Wu, Y. Li, D. Wang, J. Zeng, Q. Yin, Journal of electroceramics22(1–3), 131–135 (2009)

  52. 52.

    J. Zhao, F. Wang, W. Li, H. Li, D. Zhou, S. Gong, Y. Hu, Q. Fu, J. Appl. Phys. 108(7), 073535 (2010)

  53. 53.

    E. Aksel, J.S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, J.L. Jones, Phys. Rev. B 85(2), 024121 (2012)

  54. 54.

    T. Wang, X.-m. Chen, Y.-z. Qiu, Ferroelectrics 510(1), 161–169 (2017)

  55. 55.

    S. Pattipaka, M. Peddigari, P. Dobbidi, Ceram. Int. 43, S151–S157 (2017)

  56. 56.

    C. Xu, D. Lin, K. Kwok, Solid state sciences10(7), 934–940 (2008)

  57. 57.

    A. Hussain, C. Ahn, A. Ullah, J. Lee, I. Kim, Ferroelectrics 404(1), 157–161 (2010)

  58. 58.

    K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Japanese journal of applied physics45(5S), 4493 (2006)

  59. 59.

    L.D. Vuong, P.D. Gio, N.T. Tho, T.V. Chuong, Indian Journal of Engineering & Materials Sciences 20, 555–560 (2013)

  60. 60.

    A. Ullah, C.W. Ahn, A. Hussain, I.W. Kim, Curr. Appl. Phys. 10(6), 1367–1371 (2010)

  61. 61.

    L.-M. Chang, Y.-D. Hou, M.-K. Zhu, H. Yan, J. Appl. Phys. 101(3), 034101 (2007)

  62. 62.

    N. Dong, X. Gao, F. Xia, H. Liu, H. Hao, S. Zhang, Crystals 9(4), 206 (2019)

  63. 63.

    M. Wu, Y. Wang, D. Wang, Y. Li, IEEE transactions on ultrasonics, ferroelectrics, frequency control58(10), 2036–2041 (2011)

  64. 64.

    R. Sumang, W. Buasri, N. Kumar, T. Bongkarn, Integr. Ferroelectr. 187(1), 181–193 (2018)

  65. 65.

    T.A. Duong, H.-S. Han, Y.-H. Hong, Y.-S. Park, H.T.K. Nguyen, T.H. Dinh, J.-S. Lee, J. Electroceram. 41(1–4), 73–79 (2018)

Download references

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2017.308.

Author information

Correspondence to Dai Vuong Le.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le, D.V., Dao, A.Q. Enhanced physical properties of Bi4Ti3O12 modified Bi0.5(Na0.4K0.1)TiO3 lead-free piezoelectric ceramics using crystallographic orientation techniques. J Electroceram (2020) doi:10.1007/s10832-020-00200-z

Download citation

Keywords

  • Lead-free ceramic
  • Bismuth titanite
  • Textured ceramics; template grain growth